972 resultados para Current Source
Resumo:
This article investigates the relation between stimulus-evoked neural activity and cerebral hemodynamics. Specifically, the hypothesis is tested that hemodynamic responses can be modeled as a linear convolution of experimentally obtained measures of neural activity with a suitable hemodynamic impulse response function. To obtain a range of neural and hemodynamic responses, rat whisker pad was stimulated using brief (less than or equal to2 seconds) electrical stimuli consisting of single pulses (0.3 millisecond, 1.2 mA) combined both at different frequencies and in a paired-pulse design. Hemodynamic responses were measured using concurrent optical imaging spectroscopy and laser Doppler flowmetry, whereas neural responses were assessed through current source density analysis of multielectrode recordings from a single barrel. General linear modeling was used to deconvolve the hemodynamic impulse response to a single "neural event" from the hemodynamic and neural responses to stimulation. The model provided an excellent fit to the empirical data. The implications of these results for modeling schemes and for physiologic systems coupling neural and hemodynamic activity are discussed.
Resumo:
This paper describes a analog implementation of radial basis neural networks (RBNN) in BiCMOS technology. The RBNN uses a gaussian function obtained through the characteristic of the bipolar differential pair. The gaussian parameters (gain, center and width) is changed with programmable current source. Results obtained with PSPICE software is showed.
Resumo:
This paper presents a new methodology for the operation and control of a single-phase current-source (CS) Boost Inverter, considering that the conventional current-source inverter (CSI) has a right-half-plane (RHP) zero in its control-to-output transfer function, and this RHP zero causes the known non-minimum-phase effects. In this context, a special design with low boost inductance and a multi-loop control is developed in order to assure stable and very fast dynamics. Furthermore, the Inverter presents output voltage with very low total harmonic distortion (THD), reduced components and high power density. Therefore, this paper presents the inverter operation, the proposed control technique, and main simulation and experimental results in order to demonstrate the feasibility of the proposal. © 2010 IEEE.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
O efeito da topografia de um vale, uma colina, um declive e um aclive, em sondagens eletromagnéticas bidimensionais no domínio da freqüência, causa uma variação nos valores da amplitude e da fase da componente Hz devido a um meio homogêneo. A amplitude é menos afetada que a fase. A parede do vale mais próxima da linha de corrente causa uma forte diminuição dos valores da fase, enquanto que a parede do vale mais distante da linha causa um forte aumento. Os efeitos de uma colina são opostos aos do vale. Os efeitos do declive e do aclive num meio homogêneo, são similares, respectivamente, aos observados pelas paredes do vale e da colina mais próximas da linha de corrente. A resposta de um corpo condutivo retangular num meio homogêneo próximo a uma linha de corrente sofre pequenas variações devido a presença de um vale ou de uma colina situada longe da linha de corrente. Porém, se essas feições topográficas estiverem sobre o corpo, elas afetam fortemente a fase e a amplitude da componente Hz e apenas a amplitude, no caso da componente Hx. A resposta transiente não é afetada pela topografia para tempos muito baixos, pois nesse caso se investiga uma finíssima camada da superfície, assim como para tempos muito altos porque a profundidade de investigação é muito grande comparada com a dimensão da topografia. Para os modelos aqui estudados, a maior influência se dá para tempos intermediários, ao redor de 7 ms, ocasionando um retardo do ponto de "cross over" nas curvas de sondagens.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This paper presents a comparative study based on literature and examples in the literature, the two main technologies for the transmission of electricity at high voltage: alternate current transmission and direct current transmission. Inside the direct current transmission will be shown two technologies currently employed, transmission by current source and transmission by voltage source, contributing to a better understanding of them. The ultimate goal is to provide a text for consultation to identify key characteristics that influence the choice of future transmission lines
Resumo:
This work deals with the development of a switched-mode power supply circuit based on a Buck topology converter with a Boost Rectifier One-Cycle Control with Power Factor Correction developing, thus, a source of direct current for a module of 50 power LEDs that will be used in a lamp for public street lightning. It is presented, at first, some aspects about the most common technologies used in lamps of public street lightning in Brazil and a comparison with the White LED high power, which is the one that presents itself as the most promising among the existing market. Then it is presented the detailed development of the static converter switched PWM, consisting of a Boost rectifier with power factor correction and methodology of control One-Cycle Control associated with a Buck converter controlled by a PI method that operates as a direct current source . At the end of the simulation results of the circuit through the PSIM software are presented to verify the design behavior
Resumo:
The most significant cetacean trade items until commercial whaling all but ceased in the 1990s (aside from scientific exchanges of tissues etc.) were meat and blubber from baleen whales for human consumption. Since then, live dolphins and 'small' whales for display (and to some extent for research, military use, and 'therapy') have become the most significant cetacean 'products' in international trade. Trade in live cetaceans is presently dominated by bottlenose dolphins (Tursiops spp.), beluga whales (Debhinapterns leucas) and to a lesser extent killer whales (Orcinus orca) (Fisher and Reeves 2005). In the past, most of the dolphins in trade were common bottlenose dolphins (Tursiops truncatus) originating in the United States, Mexico and the Black Sea, but since the 1980s the United States has essentially stopped its capture-for-export activities and in 2001Mexico implemented a moratorium on live-captures. The source countries for dolphins in trade are now geographically diverse, but Cuba and Japan are currently major source nations for common bottlenose dolphins. Russia is the only current source for belugas. Russia and Japan have become the main potential sources for killer whales since Iceland ceased exporting them in the 1980s or early 1990s.
Resumo:
Long-term potentiation in the neonatal rat rnbarrel cortex in vivo rnLong-term potentiation (LTP) is important for the activity-dependent formation of early cortical circuits. In the neonatal rodent barrel cortex LTP has been so far only studied in vitro. I combined voltage-sensitive dye imaging with extracellular multi-electrode recordings to study whisker stimulation-induced LTP for both the slope of field potential and the number of multi-unit activity in the whisker-to-barrel cortex pathway of the neonatal rat barrel cortex in vivo. Single whisker stimulation at 2 Hz for 10 min induced an age-dependent expression of LTP in postnatal day (P) 0 to P14 rats with the strongest expression of LTP at P3-P5. The magnitude of LTP was largest in the stimulated barrel-related column, smaller in the surrounding septal region and no LTP could be observed in the neighboring barrel. Current source density analyses revealed an LTP-associated increase of synaptic current sinks in layer IV / lower layer II/III at P3-P5 and in the cortical plate / upper layer V at P0-P1. This study demonstrates for the first time an age-dependent and spatially confined LTP in the barrel cortex of the newborn rat in vivo. These activity-dependent modifications during the critical period may play an important role in the development and refinement of the topographic map in the barrel cortex. (An et al., 2012)rnEarly motor activity triggered by gamma and spindle bursts in neonatal rat motor cortexrnSelf-generated neuronal activity generated in subcortical regions drives early spontaneous motor activity, which is a hallmark of the developing sensorimotor system. However, the neuronal activity patterns and functions of neonatal primary motor cortex (M1) in the early movements are still unknown. I combined voltage-sensitive dye imaging with simultaneous extracellular multi-electrode recordings in the neonatal rat S1 and M1 in vivo. At P3-P5, gamma and spindle bursts observed in M1 could trigger early paw movements. Furthermore, the paw movements could be also elicited by the focal electrical stimulation of M1 at layer V. Local inactivation of M1 could significantly attenuate paw movements, suggesting that the neonatal M1 operates in motor mode. In contrast, the neonatal M1 can also operate in sensory mode. Early spontaneous movements and sensory stimulations of paw trigger gamma and spindle bursts in M1. Blockade of peripheral sensory input from the paw completely abolished sensory evoked gamma and spindle bursts. Moreover, both sensory evoked and spontaneously occurring gamma and spindle bursts mediated interactions between S1 and M1. Accordingly, local inactivation of the S1 profoundly reduced paw stimulation-induced and spontaneously occurring gamma and spindle bursts in M1, indicating that S1 plays a critical role in generation of the activity patterns in M1. This study proposes that both self-generated and sensory evoked gamma and spindle bursts in M1 may contribute to the refinement and maturation of corticospinal and sensorimotor networks required for sensorimotor coordination.rn
Resumo:
An equivalent circuit model is applied in order to describe the operation characteristics of quantum dot intermediate band solar cells (QD-IBSCs), which accounts for the recombination paths of the intermediate band (IB) through conduction band (CB), the valence band (VB) through IB, and the VB-CB transition. In this work, fitting of the measured dark J-V curves for QD-IBSCs (QD region being non-doped or direct Si-doped to n-type) and a reference GaAs p-i-n solar cell (no QDs) were carried out using this model in order to extract the diode parameters. The simulation was then performed using the extracted diode parameters to evaluate solar cell characteristics under concentration. In the case of QDSC with Si-doped (hence partially-filled) QDs, a fast recovery of the open-circuit voltage (Voc) was observed in a range of low concentration due to the IB effect. Further, at around 100X concentration, Si-doped QDSC could outperform the reference GaAs p-i-n solar cell if the current source of IB current source were sixteen times to about 10mA/cm2 compared to our present cell.
Resumo:
A novel formulation for the surface impedance characterization is introduced for the canonical problem of surface fields on a perfect electric conductor (PEC) circular cylinder with a dielectric coating due to a electric current source using the Uniform Theory of Diffraction (UTD) with an Impedance Boundary Condition (IBC). The approach is based on a TE/TM assumption of the surface fields from the original problem. Where this surface impedance fails, an optimization is performed to minimize the error in the SD Green?s function between the original problem and the equivalent one with the IBC. This new approach requires small changes in the available UTD based solution with IBC to include the geodesic ray angle and length dependence in the surface impedance formulas. This asymptotic method, accurate for large separations between source and observer points, in combination with spectral domain (SD) Green?s functions for multidielectric coatings leads to a new hybrid SD-UTD with IBC to calculate mutual coupling among microstrip patches on a multilayer dielectric-coated PEC circular cylinder. Results are compared with the eigenfunction solution in SD, where a very good agreement is met.
Resumo:
A novel formulation for the surface impedance characterization is introduced for the canonical problem of surface fields on a perfect electric conductor (PEC) circular cylinder with a dielectric coating due to a electric current source using the Uniform Theory of Diffraction (UTD) with an Impedance Boundary Condition (IBC). The approach is based on a TE/TM assumption of the surface fields from the original problem. Where this surface impedance fails, an optimization is performed to minimize the error in the SD Green?s function between the original problem and the equivalent one with the IBC. This asymptotic method, accurate for large separations between source and observer points, in combination with spectral domain (SD) Green?s functions for multidielectric coatings leads to a new hybrid SD-UTD with IBC to calculate mutual coupling among microstrip patches on a multilayer dielectric-coated PEC circular cylinder. Results are compared with the eigenfunction solution in SD, where a very good agreement is met.
Resumo:
A novel formulation for the surface impedance characterization is introduced for the canonical problem of surface fields on a perfect electric conductor (PEC) circular cylinder with a dielectric coating due to a electric current source using the Uniform Theory of Diffraction (UTD) with an Impedance Boundary Condition (IBC). The approach is based on a TE/TM assumption of the surface fields from the original problem. Where this surface impedance fails, an optimization is performed to minimize the error in the SD Green's function between the original problem and the equivalent one with the IBC. This new approach requires small changes in the available UTD based solution with IBC to include the geodesic ray angle and length dependence in the surface impedance formulas. This asymptotic method, accurate for large separations between source and observer points, in combination with spectral domain (SD) Green's functions for multidielectric coatings leads to a new hybrid SD-UTD with IBC to calculate mutual coupling among microstrip patches on a multilayer dielectric-coated PEC circular cylinder. Results are compared with the eigenfunction solution in SD, where a very good agreement is met.