999 resultados para Cr : Yb : YAG crystal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Yttrium-aluminum oxides are interesting compounds and they have been extensively used as host for lasers and phosphors, due to their stable physical and chemical properties. The fabrication of yttrium-aluminum garnet (YAG) has been investigated thoroughly. Single-crystal YAG is expensive and to produce it a new way has been investigated. This process consists of modifying the methodology of reagents mixture and the process of heating them. The microwave irradiation is used to heat-treat the oxide mixture. The traditional synthesis of YAG powders occurs through the reaction of aluminum and yttrium powders at high temperatures. With this work we investigated the preparation of YAG by non-hydrolytic sol-gel route as an alternative methodology to obtain yttrium-aluminum matrix from inorganic precursors (yttrium and aluminum chloride). The preparation of the gel was carried out in an oven-dried glassware. The AlCl3, YCl3 and ethanol were reacted in reflux under argon atmosphere. Europium III chloride was added as a structural probe. The powder was dried and heat-treated in modified microwaves. The samples were pre-treated at 50 and 800 C during I h and then heated in microwaves for 30 s, 2 and 4 min. The formation process and structure of the powders were studied by means of X-ray diffraction (XRD), photoluminescence (PL) and transmission electronic microscopy (TEM). XRD presents only picks corresponding to the YAG phase and confirmed by TEM. PL date showed that the YAG phase was formed in 2 min with the samples pre-treated at 50 C. For the samples pretreated at 800 degrees C, the YAG phase appears in 30s. The excitation spectra present a maximum of 394 nm corresponding to the L-5(6) level and emission spectra of Eu III ion present bands characteristic transitions arising from the D-5(0) -> F-7(J) (J= 1, 2, 3, 4) monifolds excited at their maximum. The magnetic dipole D-5(0) -> F-7(1) transition presents more intensity than the electric dipole D-5(0) -> F-7(2) transition. This methodology showed efficiency in obtaining YAG phase. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Results of crystal structure refinements and phase quantification for samples of Co-doped lanthanum chromites with nominal composition LaCr(1-x)Co(x)O(3), for x=0.00, 0.10, 0.20, and 0.30, prepared by combustion synthesis are presented. The resulting powders were characterized by scanning electron microscopy and X-ray diffraction (XRD). The XRD patterns were obtained with Cu K alpha radiation for non-doped lanthanum chromite sample and additionally with Cr K alpha radiation for Co-doped lanthanum chromites samples, in order to enhance the signal from scattering. Rietveld analysis of XRD data showed that the studied samples presented the lanthanum chromite with an orthorhombic structure (Pnma), except for the composition with x=0.30, in which the space group was found to be R (3) over barc. (C) 2008 International Centre for Diffraction Data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This aim of the present study was to evaluate the pulp chamber penetration of 35% hydrogen peroxide activated by LED (light-emitting diode) or Nd:YAG laser in bovine teeth, after an in-office bleaching technique. Forty-eight bovine lateral incisors were divided into four groups, acetate buffer was placed into the pulp chamber and bleaching agent was applied as follows: for group A (n = 12), activation was performed by LED; for group B (n = 12), activation was performed by Nd:YAG laser (60 mJ, 20 Hz); group C (n = 12) received no light or laser activation; and the control group (n = 12) received no bleaching gel application or light or laser activation. The acetate buffer solution was transferred to a glass tube and Leuco Crystal Violet and horseradish peroxidase were added, producing a blue solution. The optical density of this solution was determined spectrophotometrically and converted into microgram equivalents of hydrogen peroxide. The results were analysed using ANOVA and Tukey's test (5%). It was verified that the effect of activation was significant, as groups activated by LED or laser presented greater hydrogen peroxide penetration into the pulp chamber (0.499 +/- 0.622 microg) compared with groups that were not (0.198 +/- 0.218 microg). There was no statistically significant difference in the penetration of hydrogen peroxide into the pulp chamber between the two types of activation (LED or laser). The results suggest that activation by laser or LED caused an increase in hydrogen peroxide penetration into the pulp chamber.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present study was to determine clinical parameters for the use of Er,Cr:YSGG laser in the treatment of dentine hypersensitivity. Two antagonist areas were determined as control and experimental areas for irradiation in 90 premolar roots. Each surface was conditioned with 24% EDTA (sub-group 1) and 35% phosphoric acid (sub-group 2) and irradiated with the following settings: 1) Er:YAG, 60 mJ, 2 Hz, defocused; groups 2 to 9: irradiation with Er,Cr:YSGG laser, 20 Hz, Z6 tip, 0% of air and water: 2) Er,Cr:YSGG 0.25 W; 3) 0.5 W; 4) 0.75 W; 5) 1.0 W; 6) 1.25 W, 7) 1.50 W, 8) 2 W; 9) 2 W. After irradiation, samples were immersed in methylene blue solution and included in epoxy resin to obtain longitudinal cuts. The images were digitalized and analyzed by computer software. Although the samples irradiated with Er:YAG laser showed less microleakage, sub-group 1 showed differences between the groups, differing statistically from groups 3, 6, and 9. The results of sub-group 2 showed that the mean values of Er:YAG samples showed a negative trend, however, no differences were detected between the groups. For scanning electron microscopy analysis, dentine squares were obtained and prepared to evaluate the superficial morphology. Partial closure of dentinal tubules was observed after irradiation with Er:YAG and Er,Cr:YSGG laser in the 0.25 and 0.50 W protocols. As the energy densities rose, open dentinal tubules, carbonization and cracks were observed. It can be concluded that none of the parameters were capable of eliminating microleakage, however, clinical studies with Er:YAG and Er,Cr:YSGG lasers should be conducted with the lowest protocols in order to determine the most satisfactory setting for dentine hypersensitivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tribochemical silica-coating is the recommended conditioning method for improving glass-infiltrated alumina composite adhesion to resin cement. High-intensity lasers have been considered as an alternative for this purpose. This study evaluated the morphological effects of Er,Cr:YSGG laser irradiation on aluminous ceramic, and verified the microtensile bond strength of composite resin to ceramic following silica coating or laser irradiation. In-Ceram Alumina ceramic blocks were polished, submitted to airborne particle abrasion (110 mu m Al(2)O(3)), and conditioned with: (CG) tribochemical silica coating (110 mu m SiO(2)) + silanization (control group); (L1-L10) Er,Cr:YSGG laser (2.78 mu m, 20 Hz, 0.5 to 5.0 W) + silanization. Composite resin blocks were cemented to the ceramic blocks with resin cement. These sets were stored in 37A degrees C distilled water (24 h), embedded in acrylic resin, and sectioned to produce bar specimens that were submitted to microtensile testing. Bond strength values (MPa) were statistically analyzed (alpha a parts per thousand currency sign0.05), and failure modes were determined. Additional ceramic blocks were conditioned for qualitative analysis of the topography under SEM. There were no significant differences among silicatization and laser treatments (p > 0.05). Microtensile bond strength ranged from 19.2 to 27.9 MPa, and coefficients of variation ranged from 30 to 55%. Mixed failure of adhesive interface was predominant in all groups (75-96%). No chromatic alteration, cracks or melting were observed after laser irradiation with all parameters tested. Surface conditioning of glass-infiltrated alumina composite with Er,Cr:YSGG laser should be considered an innovative alternative for promoting adhesion of ceramics to resin cement, since it resulted in similar bond strength values compared to the tribochemical treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Die vorliegende Arbeit behandelt die Entwicklung des 570 Ma alten, neoproterozoischen Agardagh - Tes-Chem Ophioliths (ATCO) in Zentralasien. Dieser Ophiolith liegt südwestlich des Baikalsees (50.5° N, 95° E) und wurde im frühen Stadium der Akkretion des Zentralasiatischen Mobilgürtels auf den nordwestlichen Rand des Tuvinisch-Mongolischen Mikrokontinentes aufgeschoben. Bei dem Zentralasiatische Mobilgürtel handelt es sich um einen riesigen Akkretions-Subduktionskomplex, der heute das größte zusammenhängende Orogen der Erde darstellt. Im Rahmen dieser Arbeit wurden eine Reihe plutonischer und vulkanischer Gesteine, sowie verschiedene Mantelgesteine des ATCO mittels mikroanalytischer und geochemischer Verfahren untersucht (Elektronenstrahlmikrosonde, Ionenstrahlmikrosonde, Spurenelement- und Isotopengeochemie). Die Auswertung dieser Daten ermöglichte die Entwicklung eines geodynamisch-petrologischen Modells zur Entstehung des ATCO. Die vulkanischen Gesteine lassen sich aufgrund ihrer Spurenelement- und Isotopenzusammensetzung in inselbogenbezogene und back-arc Becken bezogene Gesteine (IA-Gesteine und BAB-Gesteine) unterscheiden. Darüber hinaus gibt es eine weitere, nicht eindeutig zuzuordnende Gruppe, die hauptsächlich mafische Gänge umfasst. Der grösste Teil der untersuchen Vulkanite gehört zur Gruppe der IA-Gesteine. Es handelt sich um Al-reiche Basalte und basaltische Andesite, welche aus einem evolvierten Stammmagma mit Mg# 0.60, Cr ~ 180 µg/g und Ni ~ 95 µg/g hauptsächlich durch Klinopyroxenfraktionierung entstanden sind. Das Stammmagma selbst entstand durch Fraktionierung von ca. 12 % Olivin und geringen Anteilen von Cr-Spinell aus einer primären, aus dem Mantel abgeleiteten Schmelze. Die IA-Gesteine haben hohe Konzentrationen an inkompatiblen Spurenelementen (leichte-(L)- Seltenerdelement-(SEE)-Konzentrationen etwa 100-fach chondritisch, chondrit-normierte (La/Yb)c von 14.6 - 5.1), negative Nb-Anomalien (Nb/La = 0.37 - 0.62) und niedrige Zr/Nb Verhältnisse (7 - 14) relativ zu den BAB-Gesteinen. Initiale eNd Werte liegen bei etwa +5.5, initiale Bleiisotopenverhältnisse sind: 206Pb/204Pb = 17.39 - 18.45, 207Pb/204Pb = 15.49 - 15.61, 208Pb/204Pb = 37.06 - 38.05. Die Anreicherung lithophiler inkompatibler Spurenelemente (LILE) in dieser Gruppe ist signifikant (Ba/La = 11 - 130) und zeigt den Einfluss subduzierter Komponenten an. Die BAB-Gesteine repräsentieren Schmelzen, die sehr wahrscheinlich aus der gleichen Mantelquelle wie die IA-Gesteine stammen, aber durch höhere Aufschmelzgrade (8 - 15 %) und ohne den Einfluss subduzierter Komponenten entstanden sind. Sie haben niedrigere Konzentrationen an inkompatiblen Spurenelementen, flache SEE-Muster ((La/Yb)c = 0.6 - 2.4) und höhere initiale eNd Werte zwischen +7.8 und +8.5. Nb Anomalien existieren nicht und Zr/Nb Verhältnisse sind hoch (21 - 48). Um die geochemische Entwicklung der vulkanischen Gesteine des ATCO zu erklären, sind mindestens drei Komponenten erforderlich: (1) eine angereicherte, ozeaninselbasalt-ähnliche Komponente mit hoher Nb Konzentration über ~ 30 µg/g, einem niedrigen Zr/Nb Verhältnis (ca. 6.5), einem niedrigen initialen eNd Wert (um 0), aber mit radiogenen 206Pb/204Pb-, 207Pb/204Pb- und 208Pb/204Pb-Verhältnissen; (2) eine N-MORB ähnliche back-arc Becken Komponente mit flachem SEE-Muster und einem hohen initialen eNd Wert von mindestens +8.5, und (3) eine Inselbogen-Komponente aus einer verarmten Mantelquelle, welche durch die abtauchende Platte geochemisch modifiziert wurde. Die geochemische Entstehung der ATCO Vulkanite lässt sich dann am besten durch eine Kombination aus Quellenkontamination, fraktionierte Kristallisation und Magmenmischung erklären. Geodynamisch gesehen entstand der ATCO sehr wahrscheinlich in einem intraozeanischen Inselbogen - back-arc System. Bei den untersuchten Plutoniten handelt es sich um ultramafische Kumulate (Wehrlite und Pyroxenite) sowie um gabbroische Plutonite (Olivin-Gabbros bis Diorite). Die geochemischen Charakteristika der mafischen Plutonite sind deutlich unterschiedlich zu denen der vulkanischen Gesteine, weshalb sie sehr wahrscheinlich ein späteres Entwicklungsstadium des ATCO repräsentieren. Die Spurenelement-Konzentrationen in den Klinopyroxenen der ultramafischen Kumulate sind extrem niedrig, mit etwa 0.1- bis 1-fach chondritischen SEE-Konzentrationen und mit deutlich LSEE-verarmten Mustern ((La/Yb)c = 0.27 - 0.52). Berechnete Gleichgewichtsschmelzen der ultramafischen Kumulate zeigen grosse Ähnlichkeit zu primären boninitischen Schmelzen. Die primären Magmen waren daher boninitischer Zusammensetzung und entstanden in dem durch vorausgegangene Schmelzprozesse stark verarmten Mantelkeil über einer Subduktionszone. Niedrige Spurenelement-Konzentrationen zeigen einen geringen Einfluss der abtauchenden Platte an. Die Spurenelement-Konzentrationen der Gabbros sind ebenfalls niedrig, mit etwa 0.5 - 10-fach chondritischen SEE-Konzentrationen und mit variablen SEE-Mustern ((La/Yb)c = 0.25 - 2.6). Analog zu den Vulkaniten der IA-Gruppe haben alle Gabbros eine negative Nb-Anomalie mit Nb/La = 0.01 - 0.31. Die initialen eNd Werte der Gabbros variieren zwischen +4.8 und +7.1, mit einem Mittelwert von +5.9, und sind damit identisch mit denen der IA-Vulkanite. Bei den untersuchten Mantelgesteinen handelt es sich um teilweise serpentinisierte Dunite und Harzburgite, die alle durch hohe Mg/Si- und niedrige Al/Si-Verhältnisse gekennzeichnet sind. Dies zeigt einen refraktären Charakter an und steht in guter Übereinstimmung mit den hohen Cr-Zahlen (Cr#) der Spinelle (bis zu Cr# = 0.83), auf deren Basis der Aufschmelzgrad der residuellen Mantelgesteine berechnet wurde. Dieser beträgt etwa 25 %. Die geochemische Zusammensetzung und die petrologischen Daten der Ultramafite und Gabbros lassen sich am besten erklären, wenn man für die Entstehung dieser Gesteine einen zweistufigen Prozess annimmt. In einer ersten Stufe entstanden die ultramafischen Kumulate unter hohem Druck in einer Magmenkammer an der Krustenbasis, hauptsächlich durch Klinopyroxen-Fraktionierung. Bei dieser Magmenkammer handelte es sich um ein offenes System, dem von unten laufend neue Schmelze zugeführt wurde, und aus dem im oberen Bereich evolviertere Schmelzen geringerer Dichte entwichen. Diese evolvierten Schmelzen stiegen in flachere krustale Bereiche auf und bildeten dort meist isolierte Intrusionskörper. Diese Intrusionskörper erstarrten ohne Magmen-Nachschub, weshalb petrographisch sehr unterschiedliche Gesteine entstehen konnten. Eine geochemische Modifikation der abkühlenden Schmelzen erfolgte allerdings durch die Assimilation von Nebengestein. Da innerhalb der Gabbros keine signifikante Variation der initalen eNd Werte existiert, handelte es sich bei dem assimilierten Material hauptsächlich um vulkanische Gesteine des ATCO und nicht um ältere, möglicherweise kontinentale Kruste.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Custom modes at a wavelength of 1064 nm were generated with a deformable mirror. The required surface deformations of the adaptive mirror were calculated with the Collins integral written in a matrix formalism. The appropriate size and shape of the actuators as well as the needed stroke were determined to ensure that the surface of the controllable mirror matches the phase front of the custom modes. A semipassive bimorph adaptive mirror with five concentric ring-shaped actuators and one defocus actuator was manufactured and characterised. The surface deformation was modelled with the response functions of the adaptive mirror in terms of an expansion with Zernike polynomials. In the experiments the Nd:YAG laser crystal was quasi-CW pumped to avoid thermally induced distortions of the phase front. The adaptive mirror allows to switch between a super-Gaussian mode, a doughnut mode, a Hermite-Gaussian fundamental beam, multi-mode operation or no oscillation in real time during laser operation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DSDP Leg 82 drilled nine sites to the southwest of the Azores Islands on the west flank of the Mid-Atlantic Ridge (MAR) in an attempt to determine the temporal and spatial evolution of the Azores "hot-spot" activity. The chemistry of the basalts recovered during Leg 82 is extremely varied: in Holes 558 and 561, both enriched (E-type: CeN/YbN = 1.5 to 2.7; Zr/Nb = 4.5 to 9.6) and depleted (or normal-N-type: CeN/YbN = 0.6 to 0.8; Zr/Nb > 20) mid-ocean ridge basalts (MORB) occur as intercalated lava flows. To the north of the Hayes Fracture Zone, there is little apparent systematic relationship between basalt chemistry and geographic position. However, to the south of the Hayes Fracture Zone, the chemical character of the basalts (N-type MORB) is more uniform. The coexistence of both E-type and N-type MORB in one hole may be explicable in terms of either complex melting/ fractionation processes during basalt genesis or chemically heterogeneous mantle sources. Significant variation in the ratios of strongly incompatible trace elements (e.g., La/Ta; Th/Ta) in the basalts of Holes 558 and 561 are not easily explicable by processes such as dynamic partial melting or open system crystal fractionation. Rather, the trace element data require that the basalts are ultimately derived from at least two chemically distinct mantle sources. The results from Leg 82 are equivocal in terms of the evolution of the Azores "hot spot," but would appear not to be compatible with a simple model of E-type MORB magmatism associated with upwelling mantle "blobs." Models that invoke a locally chemically heterogeneous mantle are best able to account for the small-scale variation in basalt chemistry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We obtained major and trace element data on 113 samples from basalts drilled during DSDP Legs 69 and 70 in the Costa Rica Rift area. The majority have major and trace element characteristics typical of ocean-ridge tholeiities. Most of the basalts are relatively MgO rich (MgO > 8 wt.%) and have Mg values (MgO/MgO + 0.85FeO x 100) of about 53, characteristics that clearly indicate that the various magmas underwent only a small amount of crystal fractionation before being erupted onto the seafloor. According to their normative mineralogies, the rocks are olivine tholeiites. A few samples plot close to the diopside-hypersthene join of the projected basalt tetrahedron. Except for basalts from two thin intervals in Hole 504B, which differ significantly from all the other basalts of the hole, practically no chemical downhole variation could be established. In the two exceptional intervals, both TiO2 and P2O5 contents are markedly enriched among the major oxides. The trace elements in these intervals are distinguished by relatively high contents of magmatophile elements and have flat to enriched chondrite-normalized distribution patterns of light rare earth elements (LREE). Most of the rocks outside these intervals are strongly depleted in large-ionlithophile (LIL) elements and LREE. We offer no satisfactory hypothesis for the origin of these basalts at this time. They might have originated within pockets of mantle materials that were more primitive than the LIL-element-depleted magmas that were the source of the other basalts. A significant change with depth in the type of alteration occurs in the 561 meters of basalt cored in Hole 504B. According to the behavior of such alteration-sensitive species as K2O, H2O-, CO2, S, Tl, and the iron oxidation ratio, the alteration is oxidative in the upper part and nonoxidative or even reducing in the lower part. The oxidative alteration may have resulted from low temperature basalt/seawater interaction, whereas hydrothermal solutions may be responsible for the nonoxidative alteration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DSDP Hole 504B is the deepest section drilled into oceanic basement, penetrating through a 571.5-m lava pile and a 209-m transition zone of lavas and dikes into 295 m of a sheeted dike complex. To define the basement composition 194 samples of least altered basalts, representing all lithologic units, were analyzed for their major and 26 trace elements. As is evident from the alteration-sensitive indicators H2O+, CO2, S, K, Mn, Zn, Cu, and the iron oxidation ratio, all rocks recovered are chemically altered to some extent. Downhole variation in these parameters enables us to distinguish five depth-related alteration zones that closely correlate with changes in alteration mineralogy. Alteration in the uppermost basement portion is characterized by pronounced K-uptake, sulfur loss, and iron oxidation and clearly demonstrates low-temperature seawater interaction. A very spectacular type of alteration is confined to the depth range from 910 to 1059 m below seafloor (BSF). Rocks from this basement portion exhibit the lowest iron oxidation, the highest H2O+ contents, and a considerable enrichment in Mn, S, Zn, and Cu. At the top of this zone a stockwork-like sulfide mineralization occurs. The chemical data suggest that this basement portion was at one time within a hydrothermal upflow zone. The steep gradient in alteration chemistry above this zone and the ore precipitation are interpreted as the result of mixing of the upflowing hydrothermal fluids with lower-temperature solutions circulating in the lava pile. Despite the chemical alteration the primary composition and variation of the rocks can be reliably established. All data demonstrate that the pillow lavas and the dikes are remarkably uniform and display almost the same range of variation. A general characteristic of the rocks that classify as olivine tholeiites is their high MgO contents (up to 10.5 wt.%) and their low K abundances (-200 ppm). According to their mg-values, which range from 0.60 to 0.74, most basalts appear to have undergone some high-level crystal fractionation. Despite the overall similarity in composition, there are two major basalt groups that have significantly different abundances and ratios of incompatible elements at similar mg-values. The majority of the basalts from the pillow lava and dike sections are chemically closely related, and most probably represent differentiation products of a common parental magma. They are low in Na2O, TiO2, and P2O5, and very low in the more hygromagmaphile elements. Interdigitated with this basalt group is a very rarely occurring basalt that is higher in Na2O, TiO2, P2O5, much less depleted in hygromagmaphile elements, and similar to normal mid-ocean ridge basalt (MORB). The latter is restricted to Lithologic Units 5 and 36 of the pillow lava section and Lithologic Unit 83 of the dike section. The two basalt groups cannot be related by differentiation processes but have to be regarded as products of two different parental magmas. The compositional uniformity of the majority of the basalts suggests that the magma chamber beneath the Costa Rica Rift reached nearly steady-state conditions. However, the presence of lavas and dikes that crystallized from a different parental magma requires the existence of a separate conduit-magma chamber system for these melts. Occasionally mixing between the two magma types appears to have occurred. The chemical characteristics of the two magma types imply some heterogeneity in the mantle source underlying the Costa Rica Rift. The predominant magma type represents an extremely depleted source, whereas the rare magma type presumably originated from regions of less depleted mantle material (relict or affected by metasomatism).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxide-free olivine gabbro and gabbro, and oxide olivine gabbro and gabbro make up the bulk of the gabbroic suite recovered from Ocean Drilling Program (ODP) Leg 179 Hole 1105A, which lies 1.2 km away from Hole 735B on the eastern transverse ridge of the Atlantis II Fracture Zone, Southwest Indian Ridge. The rocks recovered during Leg 179 show striking similarities to rocks recovered from the uppermost 500 m of Hole 735B during ODP Leg 118. The rocks of the Atlantis platform were likely unroofed as part of the footwall block of a large detachment fault on the inside corner of the intersection of the Southwest Indian Ridge and the Atlantis II Transform at ~11.5 Ma. We analyzed the lithologic, geochemical, and structural stratigraphy of the section. Downhole lithologic variation allowed division of the core into 141 lithologic intervals and 4 main units subdivided on the basis of predominance of oxide gabbroic vs. oxide-free gabbroic rocks. Detailed analyses of whole-rock chemistry, mineral chemistry, microstructure, and modes of 147 samples are presented and clearly show that the gabbroic rocks are of cumulate origin. These studies also indicate that geochemistry results correlate well with downhole magnetic susceptibility and Formation MicroScanner (FMS) resistivity measurements and images. FMS images show rocks with a well-layered structure and significant numbers of mappable layer contacts or compositional contrasts. Downhole cryptic mineral and whole-rock chemical variations depict both "normal" and inverse fine-scale variations on a scale of 10 m to <2 m with significant compositional variation over a short distance within the 143-m section sampled. A Mg# shift in whole-rock or Fo contents of olivine of as much as 20-30 units over a few meters of section is not atypical of the extreme variation in downhole plots. The products of the earliest stages of basaltic differentiation are not represented by any cumulates, as the maximum Fo content was Fo78. Similarly, the extent of fractionation represented by the gabbroic rocks and scarce granophyres in the section is much greater than that represented in the Atlantis II basalts. The abundance of oxide gabbros is similar to that in Hole 735B, Unit IV, which is tentatively correlated as a similar unit or facies with the oxide gabbroic units of Hole 1105A. Oxide phases are generally present in the most fractionated gabbroic rocks and lacking in more primitive gabbroic rocks, and there is a definite progression of oxide abundance as, for example, the Mg# of clinopyroxene falls below 73-75. Coprecipitation of oxide at such early Mg#s cannot be modeled by perfect fractional crystallization. In situ boundary layer fractionation may offer a more plausible explanation for the complex juxtaposition of oxide- and nonoxide-bearing more primitive gabbroic rocks. The geochemical signal may, in part, be disrupted by the presence of mylonitic shear zones, which strike east-west and dip both to the south and north, but predominantly to the south away from the northern rift valley where they formed. Downhole deformation textures indicate increasing average strain and crystal-plastic deformation in units that contain oxides. Oxide-rich zones may represent zones of rheologic weakness in the cumulate section along which mylonitic and foliated gabbroic shear zones nucleate in the solid state at high temperature, or the oxide may be a symptom of former melt-rich zones and hypersolidus flow, as predicted during study of Hole 735B.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nine holes (556-564) drilled during DSDP Leg 82 in a region west and southwest of the Azores Platform (Fig. 1) exhibit a wide variety of chemical compositions that indicate a complex petrogenetic history involving crystal fractionation, magma mixing, complex melting, and mantle heterogeneity. The major element chemistry of each hole except Hole 557 is typical of mid-ocean ridge basalts (MORBs), whereas the trace element and rare earth element (REE) abundances and ratios are more variable, and show that both depleted Type I and enriched Type II basalts have been erupted in the region. Hole 556 (30-34 Ma), located near a flow line through the Azores Triple Junction, contains typically depleted basalts, whereas Hole 557 (18 Ma), located near the same flow line but closer to the Azores Platform, is a highly enriched FeTi basalt, indicating that the Azores hot-spot anomaly has existed in its present configuration for at least 18 Ma, but less than 30-34 Ma. Hole 558 (34-37 Ma), located near a flow line through the FAMOUS and Leg 37 sites, includes both Type I and II basalts. Although the differences in Zr/Nb and light REE/heavy REE ratios imply different mantle sources, the (La/Ce)ch (>1) and Nd isotopic ratios are almost the same, suggesting that the complex melting and pervasive, small-scale mantle heterogeneity may account for the variations in trace element and REE ratios observed in Hole 558 (and FAMOUS sites). Farther south, Hole 559 (34-37 Ma), contains enriched Type II basalts, whereas Hole 561 (14-17 Ma), located further east near the same flow line, contains Type I and II basalts. In this case, the (La/Ce)ch and Nd isotopic ratios are different, indicating two distinct mantle sources. Again, the existence along the same flow line of two holes exhibiting such different chemistry suggests that mantle heterogeneity may exist on a more pervasive and transient smaller scale. (Hole 560 was not sampled for this study because the single basalt clast recovered was used for shipboard analysis.) All of the remaining three holes (562, 563, 564), located along a flow line about 100 km south of the Hayes Fracture Zone (33°N), contain only depleted Type I basalts. The contrast in chemical compositions suggests that the Hayes Fracture Zone may act as a "domain" boundary between an area of fairly homogeneous, depleted Type I basalts to the south (Holes 562-564) and a region of complex, highly variable basalts to the north near the Azores hot-spot anomaly (Holes 556-561).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cr-spinels in cores drilled during Ocean Drilling Program Leg 135 exhibit wide variations in composition and morphology that reflect complex petrogenetic histories. These Cr-spinels are found within basaltic lava flows that erupted in north-trending sub-basins within the Lau Basin backarc. Cr-spinels from Sites 834 and 836 occur as euhedral groundmass grains and inclusions in plagioclase, and range up to 300 ?m in size. These Cr-spinels are similar in composition, morphology, and mode of occurrence to Cr-spinels found within depleted, N-type mid-ocean-ridge basalts (N-MORB), reflecting similar crystallization conditions and host lava composition to N-MORB. Their compositional range is relatively narrow, with Cr/(Cr + Al + Fe3+) (Cr#) and Mg/(Mg + Fe2+) (Mg#) varying from 0.38 to 0.48 and 0.56 to 0.72, respectively; like Cr-spinels from N-MORB, they contain low amounts of TiO2 (0.37%-1.05%) and Fe3+/(Cr + Al + Fe3+) (Fe3+#; <0.11). In contrast, Cr-spinels from Site 839 have much higher Cr# at a given Mg#, with Cr# varying from 0.52 to 0.76 and Mg# varying from 0.27 to 0.75. These Cr-spinels are similar in composition to those from primitive, boninitic or low-Al2O3 arc basalts, sharing their low TiO2 and Fe3+# (typically below 0.35% and 0.1, respectively for spinel grain interiors). Site 839 Cr-spinels occur as small (to 50 µm) euhedra within strongly zoned olivine or as unusually large (to 3 mm), euhedral to subhedral megacrysts. These megacrysts are strongly zoned in Mg#, but they display little zoning in Cr#, providing evidence of strong compositional disequilibria with the host melt. The magnesian cores of the megacrysts crystallized from primitive, near-primary melts derived from harzburgitic or highly depleted lherzolitic sources, and they provide evidence that the Site 839 spinel-bearing lavas were derived by the mixing of melt with a Mg# of 0.75-0.80 and evolved, Cr-spinel barren melt with a Mg# < 0.6 shortly before eruption.