620 resultados para Corrosão das Armaduras
Resumo:
Very often hydrochloric acid is employed in acidification operations aiming to dissolve the mineral matrix in petroleum wheel operations, which always require intense use of corrosion inhibitors. This work presents an evaluation of common indicators, phenolfthaleine, fluorescein, methylene blue, alizarine S and methyl orange, as corrosion inhibitors for carbon steel in HCl 15% w/v at temperatures of 26, 40 and 60 ºC. Fluorescein and methyl orange show excelent corrosion inhibition efficiencies at 26 ºC; however at 60 ºC only fluorescein shows good corrosion inhibition when employed with alcohol and/or formaldehyde. For the fluorescein 1% w/v + formaldehyde 0.6% w/v mixture we present polarization and impedance curves and adsorption isotherms.
Resumo:
En este artículo se presentan los resultados del estudio del comportamiento adherente de barras de materiales compuestos de matriz polímero (FRP), con fibras de vidrio (GFRP) y con fibras de carbono (CFRP), como armadura de hormigón. Se realizan un total de 91 ensayos según las normas ACI 440.3R-04 y CSA S806-02. Los parámetros considerados en los ensayos son la resistencia del hormigón,e l acabado superficial,e l tipo de fibra y el diámetro de la barra. Los resultados dan una estimación de la capacidad de adherencia para diferentes tipos de hormigón y armaduras. La diferencia en las propiedades y en el comportamiento adherente se traduce en una respuesta adherencia-deslizamiento distinta
Resumo:
A study on optimization of bath parameters for electrodeposition of Fe-W-B alloys from plating baths containing ammonia and citrate is reported. A 2³ full factorial design was successfully employed for experimental design analysis of the results. The corrosion resistance and amorphous character were evaluated. The bath conditions obtained for depositing the alloy with good corrosion resistance were: 0.01 M iron sulfate, 0.10 M sodium tungstate and 0.60 M ammonium citrate. The alloy was deposited at 12% current efficiency. The alloy obtained had Ecorr -0.841 V and Rp 1.463 x 10(4) Ohm cm². The deposit obtained under these conditions had an amorphous character and no microcracks were observed on its surface. Besides this, the bath conditions obtained for depositing the alloy with the highest deposition efficiency were: 0.09 M iron sulfate, 0.30 M sodium tungstate and 0.50 M ammonium citrate. The alloy was deposited at 50% current efficiency, with an average composition of 34 wt% W, 66 wt% Fe and traces of boron. The alloy obtained had Ecorr -0.800 V and Rp 1.895 x 10³ Ohm cm². Electrochemical corrosion tests verified that the Fe-W-B alloy deposited under both conditions had better corrosion resistance than Fe-Mo-B.
Resumo:
The effectiveness of microemulsions (ME) of saponified coconut oil (OCS-ME) and diphenylcarbazide (DC-ME) on a carbon steel corrosion inhibition process was evaluated using an electrochemical method of polarization resistance. The ME was prepared with OCS, butanol, kerosene and saline solutions. OCS-ME and DC-ME showed highest inhibitions effects (77% and 92%, respectively) at lower concentrations (0.5% and 0.48 - 0.50%, respectively). The surfactant OCS (in H2O) showed lower efficiency (63% at 0.20 - 0.25% concentration). The greatest inhibitory effect of DC-ME could be correlated with the chemical structure and the rich O/W ME system, which are very important for adsorption phenomena in interfacial ME systems.
Resumo:
A commercial corrosion inhibitor used in petroleum production was characterized by means of infrared spectroscopy and energy dispersive spectroscopy (EDS). Predicting the adsorption behavior of corrosion inhibitor onto steel, sandstone and esmectite is the key to improve working conditions. In this study, the adsorption kinetics of inhibitor formulations in HCl 15% or in Mud Acid (HCl 13,5% and ammonium bifluoride) onto steel, sandstone and esmectite was determined by means of spectrophotometry. Kinetic parameters indicated that adsorption of inhibitor in the presence of bifluoride was favored. Moreover, the adsorption constant rate was the largest when the substrate was esmectite.
Resumo:
Fuels and biofuels have a major importance in the transportation sector of any country, contributing to their economic development. The utilization of these fuels implies their closer contact to metallic materials, which comprise vehicle, storage, and transportation systems. Thus, metallic corrosion could be related to fuels and biofuels utilization. Specially, the corrosion associated to gasoline, ethanol, diesel, biodiesel, and their mixtures is discussed in this article. Briefly, the ethanol is the most corrosive and gasoline the least. Few investigations about the effect of biodiesel indicate that the corrosion is associated to their unsaturation degree and the corrosion of diesel is related to its acidity.
Resumo:
The gravimetric and electrochemical tests are the most common techniques used in determining the corrosion rate. However, the use of electrochemical polarization is limited to electrolytes with sufficient conductivity for which Tafel curves are linear. In this study, we investigated a technique in which working microelectrodes of AISI 1020 steel were used to obtain the Tafel curves in diesel oil. The strategy was to reduce the electrode area and hence the ohmic drop. The diameter of the microelectrode was reduced to a value where the compensation of the Tafel curves became unnecessary. The results showed that for electrodes with diameters below 50 μm, the ohmic drop tends to a minimum and independent of the microelectrode diameter.
Resumo:
In this paper it is proposed an indirect method to evaluate the corrosion rate of an aluminum and zinc alloy in alkaline solution by using a well-known device for collecting gases over water. The hydrogen gas formation, a corrosion product, is monitored at different time intervals and associated with the alloy mass loss. It has been suggested that the students should work in groups, which may make feasible the social interaction among them and that results discussion may be done collectively under a professor orientation. This proposal may propitiate the learning of terminology and involved concepts as well as contribute to a better understanding of corrosion phenomena that occur in their everyday life.
Resumo:
In this work one proposes a didactic experience to simulate atmospheric corrosion of copper and nickel, due to sulfur dioxide presence. This is an opportunity to understand some basic aspects of atmospheric corrosion, by using fundamental concepts in chemistry, reactions of extraction and characterization of pollutants, as well as their participation in corrosion process. This subject opens a space for discussion about necessity of pollutant gases emissions control for preservation of materials and the environment.
Resumo:
This work has compared the surfaces of two different steel samples used as orthopedical implants, classified as ASTM F138 and ISO5832-9, through optical emission spectroscopy, by means of SEM and EDS. The samples (implants) were also submitted to potentiodynamic cyclic polarization in Ringer lactate and NaCl 0.9 M L-1 solutions; ISO5832-9 sample did not show any kind of localized corrosion, but in the case of F138 steel was observed a pit localized corrosion in both solutions. In Ringer lactate solution it was observed a loss of about 63% for nickel and 26% for iron for F138 stell, compared to the initial composition.
Resumo:
In this paper, a simple and rapid method of evaluating galvanized steel sheet corrosion in a CuSO4 solution, as an experimentation proposal for corrosion teaching. Galvanized steel corrosion is present in tanks and tubing by leading of natural or industrial waters which contain soluble copper compounds. This was the rationale for choosing the Cu2+ ions solution as an oxidizing agent. The method principle is based on visual colorimetry because the used oxidant has an intense blue color. Thus, a change in its concentration as a result of the corrosive process can be followed by a color intensity change in the solution thereby allowing evaluation of the corrosion rate.
Resumo:
Quaternary ammonium salts are the corrosion inhibitors most frequently used by the oil industry. In this study, the ultraviolet fluorescence technique was evaluated for the analysis of a quaternary ammonium salt in water as a corrosion inhibitor. The comparison with standard salt showed that an alkyl aryl quaternary ammonium salt is the main fluorophore, with emission maxima at 306 and 593 nm. The best instrumental parameters were: width of excitation and emission slits of 10 and 15 nm, respectively, and scan rate of 10 nm min-1. The presence of aromatic compounds and biocides affects the analysis of corrosion inhibitors.
Resumo:
An Nb2O|Cu corrosion-resistant coating was developed and applied onto AISI 1020 steel substrate by Powder Flame Spray. A galvanostatic electrochemical technique was employed, with and without ohmic drop, in four different soils (two corrosively aggressive and two less aggressive). Behavior of coatings in different soils was compared using a cathodic hydrogen reduction reaction (equilibrium potential, overvoltage and exchange current density) focusing on the effect of ohmic drop. Results allow recommendation of Nb2O5|Cu composite for use in buried structure protection.
Resumo:
In this paper, two simple ways of evaluating carbon steel sheet corrosion in a hydrochloric acid solution were presented as an experimental proposal for corrosion teaching. The first method is based on direct measurements of mass before and after corrosion tests. The second approach follows the principle of visual colorimetry by which soluble corrosion products are transformed into red complexes allowing monitoring of the products’ concentration according to increases in solution color intensity. Both methods proved able to determine the corrosion rate.
Resumo:
Neste trabalho realizou-se um estudo de caracterização metalúrgica do amálgama dentário Dispersalloy produzido pela empresa Dentsply Ind. e Com. Ltda., por meio da análise da sua composição química, utilizando-se a técnica espectrofotométrica de absorção atômica, procedendo-se em seguida, a análise metalográfica, utilizando-se microscopia eletrônica de varredura. A seguir, foi realizado um estudo de resistência à corrosão, utilizando-se técnicas eletroquímicas tradicionais de polarização e espectroscopia de impedância, em meio e condições que simulam a agressividade do ambiente bucal. Para isto, as amostras foram obtidas pelo processo de amalgamação mecânica, método usualmente utilizado pelos dentistas no próprio consultório, para a preparação da restauração dentária. A liga comercial Dispersalloy, representante da categoria de amálgamas de alto teor de cobre, tipo fase dispersa, foi escolhida para este estudo por ser bastante comercializada nos mercados nacional e internacional e, também por ser uma liga metálica moderna, bastante estudada, mas que ainda sofre corrosão no meio bucal.