966 resultados para Control problems
Resumo:
We introduce a novel inversion-based neuro-controller for solving control problems involving uncertain nonlinear systems that could also compensate for multi-valued systems. The approach uses recent developments in neural networks, especially in the context of modelling statistical distributions, which are applied to forward and inverse plant models. Provided that certain conditions are met, an estimate of the intrinsic uncertainty for the outputs of neural networks can be obtained using the statistical properties of networks. More generally, multicomponent distributions can be modelled by the mixture density network. In this work a novel robust inverse control approach is obtained based on importance sampling from these distributions. This importance sampling provides a structured and principled approach to constrain the complexity of the search space for the ideal control law. The performance of the new algorithm is illustrated through simulations with example systems.
Resumo:
This paper presents a general methodology for estimating and incorporating uncertainty in the controller and forward models for noisy nonlinear control problems. Conditional distribution modeling in a neural network context is used to estimate uncertainty around the prediction of neural network outputs. The developed methodology circumvents the dynamic programming problem by using the predicted neural network uncertainty to localize the possible control solutions to consider. A nonlinear multivariable system with different delays between the input-output pairs is used to demonstrate the successful application of the developed control algorithm. The proposed method is suitable for redundant control systems and allows us to model strongly non Gaussian distributions of control signal as well as processes with hysteresis.
Resumo:
This thesis reviews the existing manufacturing control techniques and identifies their practical drawbacks when applied in a high variety, low and medium volume environment. It advocates that the significant drawbacks inherent in such systems, could impair their applications under such manufacturing environment. The key weaknesses identified in the system were: capacity insensitive nature of Material Requirements Planning (MRP); the centralised approach to planning and control applied in Manufacturing Resources Planning (MRP IT); the fact that Kanban can only be used in repetitive environments; Optimised Productivity Techniques's (OPT) inability to deal with transient bottlenecks, etc. On the other hand, cellular systems offer advantages in simplifying the control problems of manufacturing and the thesis reviews systems designed for cellular manufacturing including Distributed Manufacturing Resources Planning (DMRP) and Flexible Manufacturing System (FMS) controllers. It advocates that a newly developed cellular manufacturing control methodology, which is fully automatic, capacity sensitive and responsive, has the potential to resolve the core manufacturing control problems discussed above. It's development is envisaged within the framework of a DMRP environment, in which each cell is provided with its own MRP II system and decision making capability. It is a cellular based closed loop control system, which revolves on single level Bill-Of-Materials (BOM) structure and hence provides better linkage between shop level scheduling activities and relevant entries in the MPS. This provides a better prospect of undertaking rapid response to changes in the status of manufacturing resources and incoming enquiries. Moreover, it also permits automatic evaluation of capacity and due date constraints and hence facilitates the automation of MPS within such system. A prototype cellular manufacturing control model, was developed to demonstrate the underlying principles and operational logic of the cellular manufacturing control methodology, based on the above concept. This was shown to offer significant advantages from the prospective of operational planning and control. Results of relevant tests proved that the model is capable of producing reasonable due date and undertake automation of MPS. The overall performance of the model proved satisfactory and acceptable.
Resumo:
The main theme of research of this project concerns the study of neutral networks to control uncertain and non-linear control systems. This involves the control of continuous time, discrete time, hybrid and stochastic systems with input, state or output constraints by ensuring good performances. A great part of this project is devoted to the opening of frontiers between several mathematical and engineering approaches in order to tackle complex but very common non-linear control problems. The objectives are: 1. Design and develop procedures for neutral network enhanced self-tuning adaptive non-linear control systems; 2. To design, as a general procedure, neural network generalised minimum variance self-tuning controller for non-linear dynamic plants (Integration of neural network mapping with generalised minimum variance self-tuning controller strategies); 3. To develop a software package to evaluate control system performances using Matlab, Simulink and Neural Network toolbox. An adaptive control algorithm utilising a recurrent network as a model of a partial unknown non-linear plant with unmeasurable state is proposed. Appropriately, it appears that structured recurrent neural networks can provide conveniently parameterised dynamic models for many non-linear systems for use in adaptive control. Properties of static neural networks, which enabled successful design of stable adaptive control in the state feedback case, are also identified. A survey of the existing results is presented which puts them in a systematic framework showing their relation to classical self-tuning adaptive control application of neural control to a SISO/MIMO control. Simulation results demonstrate that the self-tuning design methods may be practically applicable to a reasonably large class of unknown linear and non-linear dynamic control systems.
Resumo:
This work introduces a novel inversion-based neurocontroller for solving control problems involving uncertain nonlinear systems which could also compensate for multi-valued systems. The approach uses recent developments in neural networks, especially in the context of modelling statistical distributions, which are applied to forward and inverse plant models. Provided that certain conditions are met, an estimate of the intrinsic uncertainty for the outputs of neural networks can be obtained using the statistical properties of networks. More generally, multicomponent distributions can be modelled by the mixture density network. Based on importance sampling from these distributions a novel robust inverse control approach is obtained. This importance sampling provides a structured and principled approach to constrain the complexity of the search space for the ideal control law. The developed methodology circumvents the dynamic programming problem by using the predicted neural network uncertainty to localise the possible control solutions to consider. Convergence of the output error for the proposed control method is verified by using a Lyapunov function. Several simulation examples are provided to demonstrate the efficiency of the developed control method. The manner in which such a method is extended to nonlinear multi-variable systems with different delays between the input-output pairs is considered and demonstrated through simulation examples.
Resumo:
Online communities of consumption (OCCs) represent highly diverse groups of consumers whose interests are not always aligned. Social control in OCCs aims to effectively manage problems arising from this heterogeneity. Extant literature on social control in OCCs is fragmented as some studies focus on the principles of social control, while others focus on the implementation. Moreover, the domain is undertheorized. This article integrates the disparate literature on social control in OCCs providing a first unified conceptualization of the topic. The authors conceptualize social control as a system, or configuration, of moderation practices. Moderation practices are executed during interactions operating under different governance structures (market, hierarchy, and clan) and serving different purposes (interaction initiation, maintenance, and termination). From this conceptualization, important areas of future research emerge and research questions are developed. The framework also serves as a community management tool for OCC managers, enabling the diagnosis of social control problems and the elaboration of strategies and tactics to address them.
Resumo:
* This work was completed while the author was visiting the University of Limoges. Support from the laboratoire “Analyse non-linéaire et Optimisation” is gratefully acknowledged.
Resumo:
In this paper, we are concerned with the optimal control boundary control of a second order parabolic heat equation. Using the results in [Evtushenko, 1997] and spatial central finite difference with diagonally implicit Runge-Kutta method (DIRK) is applied to solve the parabolic heat equation. The conjugate gradient method (CGM) is applied to solve the distributed control problem. Numerical results are reported.
Resumo:
Adaptive critic methods have common roots as generalizations of dynamic programming for neural reinforcement learning approaches. Since they approximate the dynamic programming solutions, they are potentially suitable for learning in noisy, nonlinear and nonstationary environments. In this study, a novel probabilistic dual heuristic programming (DHP) based adaptive critic controller is proposed. Distinct to current approaches, the proposed probabilistic (DHP) adaptive critic method takes uncertainties of forward model and inverse controller into consideration. Therefore, it is suitable for deterministic and stochastic control problems characterized by functional uncertainty. Theoretical development of the proposed method is validated by analytically evaluating the correct value of the cost function which satisfies the Bellman equation in a linear quadratic control problem. The target value of the critic network is then calculated and shown to be equal to the analytically derived correct value.
Resumo:
I examine three issues related to internal control reporting by non-accelerated filers. Motivation for the three studies comes from the fact that Section 404 of the Sarbanes-Oxley Act (SOX) continues to be controversial, as evidenced by the permanent exemption from Section 404(b) of SOX granted to non-accelerated filers by the Dodd-Frank Wall Street Reform and Consumer Protection Act of 2010. The Dodd-Frank Act also requires the SEC to study compliance costs associated with smaller accelerated filers. In the first part of my dissertation, I document that the audit fee premium for non-accelerated filers disclosing a material weakness in internal controls (a) is significantly lower than the corresponding premium for accelerated filers, and (b) declines significantly over time. I also find that in the case of accelerated filers remediating clients pay lower fees compared to clients continuing to report internal control problems; however, such differences are not observed in the case of non-accelerated filers. The second essay focuses on audit report lag. The results indicate that presence of material weaknesses are associated with increased audit report lags, for both accelerated and non-accelerated filers. The results also indicate that the decline in report lag following remediation of problems is greater for accelerated filers than for non-accelerated filers. The third essay examines early warnings (pursuant to Section 302 disclosures) for firms that subsequently disclosed internal control problems in their 404 reports. The analyses indicate that non-accelerated firms with shorter CFO tenure, presence of accounting experts on the audit committee, and more frequent audit committee meetings are more likely to provide prior Section 302 warnings. Overall the results suggest that there are differences in internal control reporting between the accelerated and non-accelerated filers. The results provide empirical grounding for the ongoing debate about internal control reporting by non-accelerated filers.
Resumo:
The purpose of this paper is to use the framework of Lie algebroids to study optimal control problems for affine connection control systems (ACCSs) on Lie groups. In this context, the equations for critical trajectories of the problem are geometrically characterized as a Hamiltonian vector field.
Resumo:
The main goal of this paper is to extend the generalized variational problem of Herglotz type to the more general context of the Euclidean sphere S^n. Motivated by classical results on Euclidean spaces, we derive the generalized Euler-Lagrange equation for the corresponding variational problem defined on the Riemannian manifold S^n. Moreover, the problem is formulated from an optimal control point of view and it is proved that the Euler-Lagrange equation can be obtained from the Hamiltonian equations. It is also highlighted the geodesic problem on spheres as a particular case of the generalized Herglotz problem.
Resumo:
In this paper, a real-time optimal control technique for non-linear plants is proposed. The control system makes use of the cell-mapping (CM) techniques, widely used for the global analysis of highly non-linear systems. The CM framework is employed for designing approximate optimal controllers via a control variable discretization. Furthermore, CM-based designs can be improved by the use of supervised feedforward artificial neural networks (ANNs), which have proved to be universal and efficient tools for function approximation, providing also very fast responses. The quantitative nature of the approximate CM solutions fits very well with ANNs characteristics. Here, we propose several control architectures which combine, in a different manner, supervised neural networks and CM control algorithms. On the one hand, different CM control laws computed for various target objectives can be employed for training a neural network, explicitly including the target information in the input vectors. This way, tracking problems, in addition to regulation ones, can be addressed in a fast and unified manner, obtaining smooth, averaged and global feedback control laws. On the other hand, adjoining CM and ANNs are also combined into a hybrid architecture to address problems where accuracy and real-time response are critical. Finally, some optimal control problems are solved with the proposed CM, neural and hybrid techniques, illustrating their good performance.
Resumo:
We generalize the Liapunov convexity theorem's version for vectorial control systems driven by linear ODEs of first-order p = 1 , in any dimension d ∈ N , by including a pointwise state-constraint. More precisely, given a x ‾ ( ⋅ ) ∈ W p , 1 ( [ a , b ] , R d ) solving the convexified p-th order differential inclusion L p x ‾ ( t ) ∈ co { u 0 ( t ) , u 1 ( t ) , … , u m ( t ) } a.e., consider the general problem consisting in finding bang-bang solutions (i.e. L p x ˆ ( t ) ∈ { u 0 ( t ) , u 1 ( t ) , … , u m ( t ) } a.e.) under the same boundary-data, x ˆ ( k ) ( a ) = x ‾ ( k ) ( a ) & x ˆ ( k ) ( b ) = x ‾ ( k ) ( b ) ( k = 0 , 1 , … , p − 1 ); but restricted, moreover, by a pointwise state constraint of the type 〈 x ˆ ( t ) , ω 〉 ≤ 〈 x ‾ ( t ) , ω 〉 ∀ t ∈ [ a , b ] (e.g. ω = ( 1 , 0 , … , 0 ) yielding x ˆ 1 ( t ) ≤ x ‾ 1 ( t ) ). Previous results in the scalar d = 1 case were the pioneering Amar & Cellina paper (dealing with L p x ( ⋅ ) = x ′ ( ⋅ ) ), followed by Cerf & Mariconda results, who solved the general case of linear differential operators L p of order p ≥ 2 with C 0 ( [ a , b ] ) -coefficients. This paper is dedicated to: focus on the missing case p = 1 , i.e. using L p x ( ⋅ ) = x ′ ( ⋅ ) + A ( ⋅ ) x ( ⋅ ) ; generalize the dimension of x ( ⋅ ) , from the scalar case d = 1 to the vectorial d ∈ N case; weaken the coefficients, from continuous to integrable, so that A ( ⋅ ) now becomes a d × d -integrable matrix; and allow the directional vector ω to become a moving AC function ω ( ⋅ ) . Previous vectorial results had constant ω, no matrix (i.e. A ( ⋅ ) ≡ 0 ) and considered: constant control-vertices (Amar & Mariconda) and, more recently, integrable control-vertices (ourselves).
Resumo:
The main purpose of this work is to develop a numerical platform for the turbulence modeling and optimal control of liquid metal flows. Thanks to their interesting thermal properties, liquid metals are widely studied as coolants for heat transfer applications in the nuclear context. However, due to their low Prandtl numbers, the standard turbulence models commonly used for coolants as air or water are inadequate. Advanced turbulence models able to capture the anisotropy in the flow and heat transfer are then necessary. In this thesis, a new anisotropic four-parameter turbulence model is presented and validated. The proposed model is based on explicit algebraic models and solves four additional transport equations for dynamical and thermal turbulent variables. For the validation of the model, several flow configurations are considered for different Reynolds and Prandtl numbers, namely fully developed flows in a plane channel and cylindrical pipe, and forced and mixed convection in a backward-facing step geometry. Since buoyancy effects cannot be neglected in liquid metals-cooled fast reactors, the second aim of this work is to provide mathematical and numerical tools for the simulation and optimization of liquid metals in mixed and natural convection. Optimal control problems for turbulent buoyant flows are studied and analyzed with the Lagrange multipliers method. Numerical algorithms for optimal control problems are integrated into the numerical platform and several simulations are performed to show the robustness, consistency, and feasibility of the method.