902 resultados para Content-Base Image Retrieval
Resumo:
Questo studio si propone di realizzare un’applicazione per dispositivi Android che permetta, per mezzo di un gioco di ruolo strutturato come caccia al tesoro, di visitare in prima persona città d’arte e luoghi turistici. Gli utenti finali, grazie alle funzionalità dell’app stessa, potranno giocare, creare e condividere cacce al tesoro basate sulla ricerca di edifici, monumenti, luoghi di rilevanza artistico-storica o turistica; in particolare al fine di completare ciascuna tappa di una caccia al tesoro il giocatore dovrà scattare una fotografia al monumento o edificio descritto nell’obiettivo della caccia stessa. Il software grazie ai dati rilevati tramite GPS e giroscopio (qualora il dispositivo ne sia dotato) e per mezzo di un algoritmo di instance recognition sarà in grado di affermare se la foto scattata rappresenta la risposta corretta al quesito della tappa. L’applicazione GeoPhotoHunt rappresenta non solo uno strumento ludico per la visita di città turistiche o più in generale luoghi di interesse, lo studio propone, infatti come suo contributo originale, l’implementazione su piattaforma mobile di un Content Based Image Retrieval System (CBIR) del tutto indipendente da un supporto server. Nello specifico il server dell’applicazione non sarà altro che uno strumento di appoggio con il quale i membri della “community” di GeoPhotoHunt potranno pubblicare le cacce al tesoro da loro create e condividere i punteggi che hanno totalizzato partecipando a una caccia al tesoro. In questo modo quando un utente ha scaricato sul proprio smartphone i dati di una caccia al tesoro potrà iniziare l’avventura anche in assenza di una connessione internet. L’intero studio è stato suddiviso in più fasi, ognuna di queste corrisponde ad una specifica sezione dell’elaborato che segue. In primo luogo si sono effettuate delle ricerche, soprattutto nel web, con lo scopo di individuare altre applicazioni che implementano l’idea della caccia al tesoro su piattaforma mobile o applicazioni che implementassero algoritmi di instance recognition direttamente su smartphone. In secondo luogo si è ricercato in letteratura quali fossero gli algoritmi di riconoscimento di immagini più largamente diffusi e studiati in modo da avere una panoramica dei metodi da testare per poi fare la scelta dell’algoritmo più adatto al caso di studio. Quindi si è proceduto con lo sviluppo dell’applicazione GeoPhotoHunt stessa, sia per quanto riguarda l’app front-end per dispositivi Android sia la parte back-end server. Infine si è passati ad una fase di test di algoritmi di riconoscimento di immagini in modo di avere una sufficiente quantità di dati sperimentali da permettere di effettuare una scelta dell’algoritmo più adatto al caso di studio. Al termine della fase di testing si è deciso di implementare su Android un algoritmo basato sulla distanza tra istogrammi di colore costruiti sulla scala cromatica HSV, questo metodo pur non essendo robusto in presenza di variazioni di luminosità e contrasto, rappresenta un buon compromesso tra prestazioni, complessità computazionale in modo da rendere la user experience quanto più coinvolgente.
Resumo:
В статье рассмотрена проблема семантической разницы между содержимым мультимедиа и его текстовым описанием, определяемым вручную. Предложен комбинированный подход к представлению семантики мультимедиа, основанный на объединении близких по содержанию и текстовому описанию мультимедиа в классы, содержащие обобщённые описания объектов, связей между ними и ключевых слов текстовых метаданных из некоторого тезауруса. Для формирования этих классов используются операции иерархической кластеризации и машинного обучения. Данный подход позволяет расширить область поиска и навигации мультимедиа благодаря привлечению медиа-данных, имеющих схожее содержание и текстовое описание.
Resumo:
This article presents the principal results of the Ph.D. thesis A Novel Method for Content-Based Image Retrieval in Art Image Collections Utilizing Colour Semantics by Krassimira Ivanova (Institute of Mathematics and Informatics, BAS), successfully defended at Hasselt Uni-versity in Belgium, Faculty of Science, on 15 November 2011.
Classification of Paintings by Artist, Movement, and Indoor Setting Using MPEG-7 Descriptor Features
Resumo:
ACM Computing Classification System (1998): I.4.9, I.4.10.
Resumo:
The content-based image retrieval is important for various purposes like disease diagnoses from computerized tomography, for example. The relevance, social and economic of image retrieval systems has created the necessity of its improvement. Within this context, the content-based image retrieval systems are composed of two stages, the feature extraction and similarity measurement. The stage of similarity is still a challenge due to the wide variety of similarity measurement functions, which can be combined with the different techniques present in the recovery process and return results that aren’t always the most satisfactory. The most common functions used to measure the similarity are the Euclidean and Cosine, but some researchers have noted some limitations in these functions conventional proximity, in the step of search by similarity. For that reason, the Bregman divergences (Kullback Leibler and I-Generalized) have attracted the attention of researchers, due to its flexibility in the similarity analysis. Thus, the aim of this research was to conduct a comparative study over the use of Bregman divergences in relation the Euclidean and Cosine functions, in the step similarity of content-based image retrieval, checking the advantages and disadvantages of each function. For this, it was created a content-based image retrieval system in two stages: offline and online, using approaches BSM, FISM, BoVW and BoVW-SPM. With this system was created three groups of experiments using databases: Caltech101, Oxford and UK-bench. The performance of content-based image retrieval system using the different functions of similarity was tested through of evaluation measures: Mean Average Precision, normalized Discounted Cumulative Gain, precision at k, precision x recall. Finally, this study shows that the use of Bregman divergences (Kullback Leibler and Generalized) obtains better results than the Euclidean and Cosine measures with significant gains for content-based image retrieval.
Resumo:
Dissertação apresentada para obtenção do Grau de Mestre em Engenharia Informática pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
In this paper, we propose a content selection framework that improves the users` experience when they are enriching or authoring pieces of news. This framework combines a variety of techniques to retrieve semantically related videos, based on a set of criteria which are specified automatically depending on the media`s constraints. The combination of different content selection mechanisms can improve the quality of the retrieved scenes, because each technique`s limitations are minimized by other techniques` strengths. We present an evaluation based on a number of experiments, which show that the retrieved results are better when all criteria are used at time.
Resumo:
With the rapid increase in both centralized video archives and distributed WWW video resources, content-based video retrieval is gaining its importance. To support such applications efficiently, content-based video indexing must be addressed. Typically, each video is represented by a sequence of frames. Due to the high dimensionality of frame representation and the large number of frames, video indexing introduces an additional degree of complexity. In this paper, we address the problem of content-based video indexing and propose an efficient solution, called the Ordered VA-File (OVA-File) based on the VA-file. OVA-File is a hierarchical structure and has two novel features: 1) partitioning the whole file into slices such that only a small number of slices are accessed and checked during k Nearest Neighbor (kNN) search and 2) efficient handling of insertions of new vectors into the OVA-File, such that the average distance between the new vectors and those approximations near that position is minimized. To facilitate a search, we present an efficient approximate kNN algorithm named Ordered VA-LOW (OVA-LOW) based on the proposed OVA-File. OVA-LOW first chooses possible OVA-Slices by ranking the distances between their corresponding centers and the query vector, and then visits all approximations in the selected OVA-Slices to work out approximate kNN. The number of possible OVA-Slices is controlled by a user-defined parameter delta. By adjusting delta, OVA-LOW provides a trade-off between the query cost and the result quality. Query by video clip consisting of multiple frames is also discussed. Extensive experimental studies using real video data sets were conducted and the results showed that our methods can yield a significant speed-up over an existing VA-file-based method and iDistance with high query result quality. Furthermore, by incorporating temporal correlation of video content, our methods achieved much more efficient performance.
Resumo:
In this paper, we present ICICLE (Image ChainNet and Incremental Clustering Engine), a prototype system that we have developed to efficiently and effectively retrieve WWW images based on image semantics. ICICLE has two distinguishing features. First, it employs a novel image representation model called Weight ChainNet to capture the semantics of the image content. A new formula, called list space model, for computing semantic similarities is also introduced. Second, to speed up retrieval, ICICLE employs an incremental clustering mechanism, ICC (Incremental Clustering on ChainNet), to cluster images with similar semantics into the same partition. Each cluster has a summary representative and all clusters' representatives are further summarized into a balanced and full binary tree structure. We conducted an extensive performance study to evaluate ICICLE. Compared with some recently proposed methods, our results show that ICICLE provides better recall and precision. Our clustering technique ICC facilitates speedy retrieval of images without sacrificing recall and precision significantly.
Resumo:
Continuing advances in digital image capture and storage are resulting in a proliferation of imagery and associated problems of information overload in image domains. In this work we present a framework that supports image management using an interactive approach that captures and reuses task-based contextual information. Our framework models the relationship between images and domain tasks they support by monitoring the interactive manipulation and annotation of task-relevant imagery. During image analysis, interactions are captured and a task context is dynamically constructed so that human expertise, proficiency and knowledge can be leveraged to support other users in carrying out similar domain tasks using case-based reasoning techniques. In this article we present our framework for capturing task context and describe how we have implemented the framework as two image retrieval applications in the geo-spatial and medical domains. We present an evaluation that tests the efficiency of our algorithms for retrieving image context information and the effectiveness of the framework for carrying out goal-directed image tasks. © 2010 Springer Science+Business Media, LLC.
Resumo:
With the rise of smart phones, lifelogging devices (e.g. Google Glass) and popularity of image sharing websites (e.g. Flickr), users are capturing and sharing every aspect of their life online producing a wealth of visual content. Of these uploaded images, the majority are poorly annotated or exist in complete semantic isolation making the process of building retrieval systems difficult as one must firstly understand the meaning of an image in order to retrieve it. To alleviate this problem, many image sharing websites offer manual annotation tools which allow the user to “tag” their photos, however, these techniques are laborious and as a result have been poorly adopted; Sigurbjörnsson and van Zwol (2008) showed that 64% of images uploaded to Flickr are annotated with < 4 tags. Due to this, an entire body of research has focused on the automatic annotation of images (Hanbury, 2008; Smeulders et al., 2000; Zhang et al., 2012a) where one attempts to bridge the semantic gap between an image’s appearance and meaning e.g. the objects present. Despite two decades of research the semantic gap still largely exists and as a result automatic annotation models often offer unsatisfactory performance for industrial implementation. Further, these techniques can only annotate what they see, thus ignoring the “bigger picture” surrounding an image (e.g. its location, the event, the people present etc). Much work has therefore focused on building photo tag recommendation (PTR) methods which aid the user in the annotation process by suggesting tags related to those already present. These works have mainly focused on computing relationships between tags based on historical images e.g. that NY and timessquare co-exist in many images and are therefore highly correlated. However, tags are inherently noisy, sparse and ill-defined often resulting in poor PTR accuracy e.g. does NY refer to New York or New Year? This thesis proposes the exploitation of an image’s context which, unlike textual evidences, is always present, in order to alleviate this ambiguity in the tag recommendation process. Specifically we exploit the “what, who, where, when and how” of the image capture process in order to complement textual evidences in various photo tag recommendation and retrieval scenarios. In part II, we combine text, content-based (e.g. # of faces present) and contextual (e.g. day-of-the-week taken) signals for tag recommendation purposes, achieving up to a 75% improvement to precision@5 in comparison to a text-only TF-IDF baseline. We then consider external knowledge sources (i.e. Wikipedia & Twitter) as an alternative to (slower moving) Flickr in order to build recommendation models on, showing that similar accuracy could be achieved on these faster moving, yet entirely textual, datasets. In part II, we also highlight the merits of diversifying tag recommendation lists before discussing at length various problems with existing automatic image annotation and photo tag recommendation evaluation collections. In part III, we propose three new image retrieval scenarios, namely “visual event summarisation”, “image popularity prediction” and “lifelog summarisation”. In the first scenario, we attempt to produce a rank of relevant and diverse images for various news events by (i) removing irrelevant images such memes and visual duplicates (ii) before semantically clustering images based on the tweets in which they were originally posted. Using this approach, we were able to achieve over 50% precision for images in the top 5 ranks. In the second retrieval scenario, we show that by combining contextual and content-based features from images, we are able to predict if it will become “popular” (or not) with 74% accuracy, using an SVM classifier. Finally, in chapter 9 we employ blur detection and perceptual-hash clustering in order to remove noisy images from lifelogs, before combining visual and geo-temporal signals in order to capture a user’s “key moments” within their day. We believe that the results of this thesis show an important step towards building effective image retrieval models when there lacks sufficient textual content (i.e. a cold start).
Resumo:
Relevant past events can be remembered when visualizing related pictures. The main difficulty is how to find these photos in a large personal collection. Query definition and image annotation are key issues to overcome this problem. The former is relevant due to the diversity of the clues provided by our memory when recovering a past moment and the later because images need to be annotated with information regarding those clues to be retrieved. Consequently, tools to recover past memories should deal carefully with these two tasks. This paper describes a user interface designed to explore pictures from personal memories. Users can query the media collection in several ways and for this reason an iconic visual language to define queries is proposed. Automatic and semi-automatic annotation is also performed using the image content and the audio information obtained when users show their images to others. The paper also presents the user interface evaluation based on tests with 58 participants.
Resumo:
High-content analysis has revolutionized cancer drug discovery by identifying substances that alter the phenotype of a cell, which prevents tumor growth and metastasis. The high-resolution biofluorescence images from assays allow precise quantitative measures enabling the distinction of small molecules of a host cell from a tumor. In this work, we are particularly interested in the application of deep neural networks (DNNs), a cutting-edge machine learning method, to the classification of compounds in chemical mechanisms of action (MOAs). Compound classification has been performed using image-based profiling methods sometimes combined with feature reduction methods such as principal component analysis or factor analysis. In this article, we map the input features of each cell to a particular MOA class without using any treatment-level profiles or feature reduction methods. To the best of our knowledge, this is the first application of DNN in this domain, leveraging single-cell information. Furthermore, we use deep transfer learning (DTL) to alleviate the intensive and computational demanding effort of searching the huge parameter's space of a DNN. Results show that using this approach, we obtain a 30% speedup and a 2% accuracy improvement.
Resumo:
In any data mining applications, automated text and text and image retrieval of information is needed. This becomes essential with the growth of the Internet and digital libraries. Our approach is based on the latent semantic indexing (LSI) and the corresponding term-by-document matrix suggested by Berry and his co-authors. Instead of using deterministic methods to find the required number of first "k" singular triplets, we propose a stochastic approach. First, we use Monte Carlo method to sample and to build much smaller size term-by-document matrix (e.g. we build k x k matrix) from where we then find the first "k" triplets using standard deterministic methods. Second, we investigate how we can reduce the problem to finding the "k"-largest eigenvalues using parallel Monte Carlo methods. We apply these methods to the initial matrix and also to the reduced one. The algorithms are running on a cluster of workstations under MPI and results of the experiments arising in textual retrieval of Web documents as well as comparison of the stochastic methods proposed are presented. (C) 2003 IMACS. Published by Elsevier Science B.V. All rights reserved.
Resumo:
The demands of image processing related systems are robustness, high recognition rates, capability to handle incomplete digital information, and magnanimous flexibility in capturing shape of an object in an image. It is exactly here that, the role of convex hulls comes to play. The objective of this paper is twofold. First, we summarize the state of the art in computational convex hull development for researchers interested in using convex hull image processing to build their intuition, or generate nontrivial models. Secondly, we present several applications involving convex hulls in image processing related tasks. By this, we have striven to show researchers the rich and varied set of applications they can contribute to. This paper also makes a humble effort to enthuse prospective researchers in this area. We hope that the resulting awareness will result in new advances for specific image recognition applications.