783 resultados para Conjuntos fuzzy
Resumo:
Interval-valued versions of the max-flow min-cut theorem and Karp-Edmonds algorithm are developed and provide robustness estimates for flows in networks in an imprecise or uncertain environment. These results are extended to networks with fuzzy capacities and flows. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
In this paper a methodology for integrated multivariate monitoring and control of biological wastewater treatment plants during extreme events is presented. To monitor the process, on-line dynamic principal component analysis (PCA) is performed on the process data to extract the principal components that represent the underlying mechanisms of the process. Fuzzy c-means (FCM) clustering is used to classify the operational state. Performing clustering on scores from PCA solves computational problems as well as increases robustness due to noise attenuation. The class-membership information from FCM is used to derive adequate control set points for the local control loops. The methodology is illustrated by a simulation study of a biological wastewater treatment plant, on which disturbances of various types are imposed. The results show that the methodology can be used to determine and co-ordinate control actions in order to shift the control objective and improve the effluent quality.
Resumo:
This note gives a theory of state transition matrices for linear systems of fuzzy differential equations. This is used to give a fuzzy version of the classical variation of constants formula. A simple example of a time-independent control system is used to illustrate the methods. While similar problems to the crisp case arise for time-dependent systems, in time-independent cases the calculations are elementary solutions of eigenvalue-eigenvector problems. In particular, for nonnegative or nonpositive matrices, the problems at each level set, can easily be solved in MATLAB to give the level sets of the fuzzy solution. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Formulations of fuzzy integral equations in terms of the Aumann integral do not reflect the behavior of corresponding crisp models. Consequently, they are ill-adapted to describe physical phenomena, even when vagueness and uncertainty are present. A similar situation for fuzzy ODEs has been obviated by interpretation in terms of families of differential inclusions. The paper extends this formalism to fuzzy integral equations and shows that the resulting solution sets and attainability sets are fuzzy and far better descriptions of uncertain models involving integral equations. The investigation is restricted to Volterra type equations with mildly restrictive conditions, but the methods are capable of extensive generalization to other types and more general assumptions. The results are illustrated by integral equations relating to control models with fuzzy uncertainties.
Resumo:
Este trabalho teve como objetivo utilizar a lógica fuzzy para geração de zonas de manejo, na área agrária e ambiental. Uma das aplicações consistiu da utilização do método fuzzy C-means, para geração de zonas de manejo para a cultura do mamoeiro, em um plantio comercial localizado em São Mateus-ES, com base em determinações realizadas através de amostragens e análises químicas do solo, considerando os atributos: P, K, Ca, Mg, e Saturação por bases (V%). Aplicou-se também a lógica fuzzy para desenvolver e executar um procedimento para dar suporte ao processo de tomada de decisões, envolvendo análise multicritério, gerando mapas de adequabilidade ao uso público e a conservação no Parque Estadual da Cachoeira da Fumaça, no município de Alegre-ES, considerando como fatores a localização da cachoeira, o uso do solo, os recursos hídricos, as trilhas, os locais de acessos, a infraestrutura, a declividade da área, e utilizando a abordagem de Sistema de Informações Geográficas para análise e combinação da base de dados. A partir das zonas de manejo geradas, foi possível explicar a variabilidade espacial dos atributos do solo na área de estudo da cultura do mamoeiro, e observa-se que as similaridades entre as zonas geradas, a partir de diferentes atributos, mostrou variação, mas observa-se uma influência nos dados, principalmente pelos atributos P e V. A partir do zoneamento da Unidade de Conservação foi possível selecionar áreas mais aptas ao ecoturismo, sendo encontradas próximas da cachoeira, trilhas em zonas de reflorestamento e de Mata Atlântica. Quanto às áreas propensas a medidas de conservação localizam-se próximas à cachoeira e às estruturas do parque, devido à maior pressão antrópica exercida nesses locais. Outras áreas que se destacaram, foram as áreas de pastagem, por estarem em estágio de regeneração natural. Os resultados indicam áreas de mesmo potencial de produção do mamoeiro, ou quando aplicado à área ambiental, áreas que devem receber maior cuidado para utilização por ecoturismo e para preservação e servem de base para a tomada de decisões, visando melhor aproveitamento da área.
Resumo:
Em estudos de acessibilidade, e não só, são muito úteis um tipo de estruturas que se podem obter a partir de uma rede, eventualmente multi-modal e parametrizável: as chamadas “áreas de serviço”, as quais são constituídas por polígonos, cada qual correspondente a uma zona situada entre um certo intervalo de custo, relativamente a uma certa “feature” (ponto, multiponto, etc.). Pretende-se neste estudo obter, a partir de áreas de serviço relativas a um universo de features, áreas de serviço relativas a subconjuntos dessas features. Estas técnicas envolvem manipulações relativamente complexas de polígonos e podem ser generalizadas para conjuntos de conjuntos e assim sucessivamente. Convém notar que nem sempre se dispõe da rede, podendo dispor-se das referidas estruturas; eventualmente, no caso de áreas de serviço, sob a forma de imagens (raster) a serem convertidas para formato vectorial.
A competência que as crianças pequenas têm para contar e fazer inferências numéricas entre conjuntos
Resumo:
Este projecto de investigação apresenta um estudo experimental relacionado com a competência das crianças na contagem de conjuntos, em diferentes condições de contagem, e procura analisar se estas crianças têm já uma compreensão do significado das suas contagens, quando fazem julgamentos em que a numerosidade de dois conjuntos está em correspondência perfeita e é igual; ou diferente, quando os conjuntos estão em não correspondência, fazendo inferências. Neste estudo foram apresentadas duas tarefas principais como forma de examinar as duas principais propostas: “ Tarefas de contagem” e “Tarefas de inferência”. As crianças foram testadas e tiveram que responder a vinte e quatro questões relacionadas com as diferentes condições de contagem, bem como com as questões de inferência. Os resultados deste estudo parecem indicar que a maioria das crianças, que conseguiam contar correctamente, eram capazes de fazer inferências, quando os conjuntos estavam em correspondência perfeita, principalmente as de 4 e 5 anos. No entanto, contar parece não ter muito significado para as crianças mais pequenas, principalmente as de 3 anos que muito embora já demonstrem formas correctas de contagem, eram pouco capazes de inferir. Muitas das crianças de 4 e 5 anos que sabiam já contar perfeitamente, não conseguiam inferir em situações de relação de não correspondência.
Resumo:
OBJECTIVE: To introduce a fuzzy linguistic model for evaluating the risk of neonatal death. METHODS: The study is based on the fuzziness of the variables newborn birth weight and gestational age at delivery. The inference used was Mamdani's method. Neonatologists were interviewed to estimate the risk of neonatal death under certain conditions and to allow comparing their opinions and the model values. RESULTS: The results were compared with experts' opinions and the Fuzzy model was able to capture the expert knowledge with a strong correlation (r=0.96). CONCLUSIONS: The linguistic model was able to estimate the risk of neonatal death when compared to experts' performance.
Resumo:
The increased integration of wind power into the electric grid, as nowadays occurs in Portugal, poses new challenges due to its intermittency and volatility. Hence, good forecasting tools play a key role in tackling these challenges. In this paper, an adaptive neuro-fuzzy inference approach is proposed for short-term wind power forecasting. Results from a real-world case study are presented. A thorough comparison is carried out, taking into account the results obtained with other approaches. Numerical results are presented and conclusions are duly drawn. (C) 2011 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.
Resumo:
Dissertação apresentada ao Instituto Superior de Contabilidade e Administração do Porto para a obtenção do Grau de Mestre em Auditoria Orientada pelo Dr. José da Silva Fernandes
Resumo:
This paper presents a methodology that aims to increase the probability of delivering power to any load point of the electrical distribution system by identifying new investments in distribution components. The methodology is based on statistical failure and repair data of the distribution power system components and it uses fuzzy-probabilistic modelling for system component outage parameters. Fuzzy membership functions of system component outage parameters are obtained by statistical records. A mixed integer non-linear optimization technique is developed to identify adequate investments in distribution networks components that allow increasing the availability level for any customer in the distribution system at minimum cost for the system operator. To illustrate the application of the proposed methodology, the paper includes a case study that considers a real distribution network.
Resumo:
The paper proposes a methodology to increase the probability of delivering power to any load point by identifying new investments in distribution energy systems. The proposed methodology is based on statistical failure and repair data of distribution components and it uses a fuzzy-probabilistic modeling for the components outage parameters. The fuzzy membership functions of the outage parameters of each component are based on statistical records. A mixed integer nonlinear programming optimization model is developed in order to identify the adequate investments in distribution energy system components which allow increasing the probability of delivering power to any customer in the distribution system at the minimum possible cost for the system operator. To illustrate the application of the proposed methodology, the paper includes a case study that considers a 180 bus distribution network.
Resumo:
This paper proposes a new methodology to reduce the probability of occurring states that cause load curtailment, while minimizing the involved costs to achieve that reduction. The methodology is supported by a hybrid method based on Fuzzy Set and Monte Carlo Simulation to catch both randomness and fuzziness of component outage parameters of transmission power system. The novelty of this research work consists in proposing two fundamentals approaches: 1) a global steady approach which deals with building the model of a faulted transmission power system aiming at minimizing the unavailability corresponding to each faulted component in transmission power system. This, results in the minimal global cost investment for the faulted components in a system states sample of the transmission network; 2) a dynamic iterative approach that checks individually the investment’s effect on the transmission network. A case study using the Reliability Test System (RTS) 1996 IEEE 24 Buses is presented to illustrate in detail the application of the proposed methodology.
Resumo:
This paper presents a methodology for distribution networks reconfiguration in outage presence in order to choose the reconfiguration that presents the lower power losses. The methodology is based on statistical failure and repair data of the distribution power system components and uses fuzzy-probabilistic modelling for system component outage parameters. Fuzzy membership functions of system component outage parameters are obtained by statistical records. A hybrid method of fuzzy set and Monte Carlo simulation based on the fuzzy-probabilistic models allows catching both randomness and fuzziness of component outage parameters. Once obtained the system states by Monte Carlo simulation, a logical programming algorithm is applied to get all possible reconfigurations for every system state. In order to evaluate the line flows and bus voltages and to identify if there is any overloading, and/or voltage violation a distribution power flow has been applied to select the feasible reconfiguration with lower power losses. To illustrate the application of the proposed methodology to a practical case, the paper includes a case study that considers a real distribution network.
Fuzzy Monte Carlo mathematical model for load curtailment minimization in transmission power systems
Resumo:
This paper presents a methodology which is based on statistical failure and repair data of the transmission power system components and uses fuzzyprobabilistic modeling for system component outage parameters. Using statistical records allows developing the fuzzy membership functions of system component outage parameters. The proposed hybrid method of fuzzy set and Monte Carlo simulation based on the fuzzy-probabilistic models allows catching both randomness and fuzziness of component outage parameters. A network contingency analysis to identify any overloading or voltage violation in the network is performed once obtained the system states by Monte Carlo simulation. This is followed by a remedial action algorithm, based on optimal power flow, to reschedule generations and alleviate constraint violations and, at the same time, to avoid any load curtailment, if possible, or, otherwise, to minimize the total load curtailment, for the states identified by the contingency analysis. In order to illustrate the application of the proposed methodology to a practical case, the paper will include a case study for the Reliability Test System (RTS) 1996 IEEE 24 BUS.