830 resultados para Collaborative learning and applications
Resumo:
A connection between a fuzzy neural network model with the mixture of experts network (MEN) modelling approach is established. Based on this linkage, two new neuro-fuzzy MEN construction algorithms are proposed to overcome the curse of dimensionality that is inherent in the majority of associative memory networks and/or other rule based systems. The first construction algorithm employs a function selection manager module in an MEN system. The second construction algorithm is based on a new parallel learning algorithm in which each model rule is trained independently, for which the parameter convergence property of the new learning method is established. As with the first approach, an expert selection criterion is utilised in this algorithm. These two construction methods are equivalent in their effectiveness in overcoming the curse of dimensionality by reducing the dimensionality of the regression vector, but the latter has the additional computational advantage of parallel processing. The proposed algorithms are analysed for effectiveness followed by numerical examples to illustrate their efficacy for some difficult data based modelling problems.
Resumo:
This paper presents a novel approach to the automatic classification of very large data sets composed of terahertz pulse transient signals, highlighting their potential use in biochemical, biomedical, pharmaceutical and security applications. Two different types of THz spectra are considered in the classification process. Firstly a binary classification study of poly-A and poly-C ribonucleic acid samples is performed. This is then contrasted with a difficult multi-class classification problem of spectra from six different powder samples that although have fairly indistinguishable features in the optical spectrum, they also possess a few discernable spectral features in the terahertz part of the spectrum. Classification is performed using a complex-valued extreme learning machine algorithm that takes into account features in both the amplitude as well as the phase of the recorded spectra. Classification speed and accuracy are contrasted with that achieved using a support vector machine classifier. The study systematically compares the classifier performance achieved after adopting different Gaussian kernels when separating amplitude and phase signatures. The two signatures are presented as feature vectors for both training and testing purposes. The study confirms the utility of complex-valued extreme learning machine algorithms for classification of the very large data sets generated with current terahertz imaging spectrometers. The classifier can take into consideration heterogeneous layers within an object as would be required within a tomographic setting and is sufficiently robust to detect patterns hidden inside noisy terahertz data sets. The proposed study opens up the opportunity for the establishment of complex-valued extreme learning machine algorithms as new chemometric tools that will assist the wider proliferation of terahertz sensing technology for chemical sensing, quality control, security screening and clinic diagnosis. Furthermore, the proposed algorithm should also be very useful in other applications requiring the classification of very large datasets.
Resumo:
There is an increasing demand in higher education institutions for training in complex environmental problems. Such training requires a careful mix of conventional methods and innovative solutions, a task not always easy to accomplish. In this paper we review literature on this theme, highlight relevant advances in the pedagogical literature, and report on some examples resulting from our recent efforts to teach complex environmental issues. The examples range from full credit courses in sustainable development and research methods to project-based and in-class activity units. A consensus from the literature is that lectures are not sufficient to fully engage students in these issues. A conclusion from the review of examples is that problem-based and project-based, e.g., through case studies, experiential learning opportunities, or real-world applications, learning offers much promise. This could greatly be facilitated by online hubs through which teachers, students, and other members of the practitioner and academic community share experiences in teaching and research, the way that we have done here.
Resumo:
The study investigated early years teachers’ understanding and use of graphic symbols, defined as the visual representation(s) used to communicate one or more “linguistic” concepts, which can be used to facilitate science learning. The study was conducted in Cyprus where six early years teachers were observed and interviewed. The results indicate that the teachers had a good understanding of the role of symbols, but demonstrated a lack of understanding in regards to graphic symbols specifically. None of the teachers employed them in their observed science lesson, although some of them claimed that they did so. Findings suggest a gap in participants’ acquaintance with the terminology regarding different types of symbols and a lack of awareness about the use and availability of graphic symbols for the support of learning. There is a need to inform and train early years teachers about graphic symbols and their potential applications in supporting children’s learning.
Resumo:
With the rapid advancement of the webtechnology, more and more educationalresources, including software applications forteaching/learning methods, are available acrossthe web, which enables learners to access thelearning materials and use various ways oflearning at any time and any place. Moreover,various web-based teaching/learning approacheshave been developed during the last decade toenhance the capability of both educators andlearners. Particularly, researchers from bothcomputer science and education are workingtogether, collaboratively focusing ondevelopment of pedagogically enablingtechnologies which are believed to improve theinfrastructure of education systems andprocesses, including curriculum developmentmodels, teaching/learning methods, managementof educational resources, systematic organizationof communication and dissemination ofknowledge and skills required by and adapted tousers. Despite of its fast development, however,there are still great gaps between learningintentions, organization of supporting resources,management of educational structures,knowledge points to be learned and interknowledgepoint relationships such as prerequisites,assessment of learning outcomes, andtechnical and pedagogic approaches. Moreconcretely, the issues have been widelyaddressed in literature include a) availability andusefulness of resources, b) smooth integration ofvarious resources and their presentation, c)learners’ requirements and supposed learningoutcomes, d) automation of learning process interms of its schedule and interaction, and e)customization of the resources and agilemanagement of the learning services for deliveryas well as necessary human interferences.Considering these problems and bearing in mindthe advanced web technology of which weshould make full use, in this report we willaddress the following two aspects of systematicarchitecture of learning/teaching systems: 1)learning objects – a semantic description andorganization of learning resources using the webservice models and methods, and 2) learningservices discovery and learning goals match foreducational coordination and learning serviceplanning.
Resumo:
Developing successful navigation and mapping strategies is an essential part of autonomous robot research. However, hardware limitations often make for inaccurate systems. This project serves to investigate efficient alternatives to mapping an environment, by first creating a mobile robot, and then applying machine learning to the robot and controlling systems to increase the robustness of the robot system. My mapping system consists of a semi-autonomous robot drone in communication with a stationary Linux computer system. There are learning systems running on both the robot and the more powerful Linux system. The first stage of this project was devoted to designing and building an inexpensive robot. Utilizing my prior experience from independent studies in robotics, I designed a small mobile robot that was well suited for simple navigation and mapping research. When the major components of the robot base were designed, I began to implement my design. This involved physically constructing the base of the robot, as well as researching and acquiring components such as sensors. Implementing the more complex sensors became a time-consuming task, involving much research and assistance from a variety of sources. A concurrent stage of the project involved researching and experimenting with different types of machine learning systems. I finally settled on using neural networks as the machine learning system to incorporate into my project. Neural nets can be thought of as a structure of interconnected nodes, through which information filters. The type of neural net that I chose to use is a type that requires a known set of data that serves to train the net to produce the desired output. Neural nets are particularly well suited for use with robotic systems as they can handle cases that lie at the extreme edges of the training set, such as may be produced by "noisy" sensor data. Through experimenting with available neural net code, I became familiar with the code and its function, and modified it to be more generic and reusable for multiple applications of neural nets.
Resumo:
In the present work, we propose a model for the statistical distribution of people versus number of steps acquired by them in a learning process, based on competition, learning and natural selection. We consider that learning ability is normally distributed. We found that the number of people versus step acquired by them in a learning process is given through a power law. As competition, learning and selection is also at the core of all economical and social systems, we consider that power-law scaling is a quantitative description of this process in social systems. This gives an alternative thinking in holistic properties of complex systems. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In the last years there was an exponential growth in the offering of Web-enabled distance courses and in the number of enrolments in corporate and higher education using this modality. However, the lack of efficient mechanisms that assures user authentication in this sort of environment, in the system login as well as throughout his session, has been pointed out as a serious deficiency. Some studies have been led about possible biometric applications for web authentication. However, password based authentication still prevails. With the popularization of biometric enabled devices and resultant fall of prices for the collection of biometric traits, biometrics is reconsidered as a secure remote authentication form for web applications. In this work, the face recognition accuracy, captured on-line by a webcam in Internet environment, is investigated, simulating the natural interaction of a person in the context of a distance course environment. Partial results show that this technique can be successfully applied to confirm the presence of users throughout the course attendance in an educational distance course. An efficient client/server architecture is also proposed. © 2009 Springer Berlin Heidelberg.
Resumo:
This article brings some of the results of a study that analyzes a hybrid course for in-service teachers in the Project Teletandem Brazil: foreign languages for all. In this project, Brazilian teachers of Spanish as a foreign language took part in a blended tandem learning course, communicating via videoconferencing with Uruguayan teachers of Portuguese as a foreign language. The aim of the study was to verify Brazilian teachers' concepts and beliefs concerning language and culture and how the teletandem interactions affected them. After the interactions, teachers' views of culture seemed to also incorporate aspects of culture as an interpersonal process, instead of the factual and static view which was previously predominant. Therefore teacher education programs must consider the possibility of conjugating theory and reflective practice through the use of videoconference tools in order to allow teachers to experience culture rather learn facts about it. © 2011 ACADEMY PUBLISHER.
Resumo:
The correct classification of sugar according to its physico-chemical characteristics directly influences the value of the product and its acceptance by the market. This study shows that using an electronic tongue system along with established techniques of supervised learning leads to the correct classification of sugar samples according to their qualities. In this paper, we offer two new real, public and non-encoded sugar datasets whose attributes were automatically collected using an electronic tongue, with and without pH controlling. Moreover, we compare the performance achieved by several established machine learning methods. Our experiments were diligently designed to ensure statistically sound results and they indicate that k-nearest neighbors method outperforms other evaluated classifiers and, hence, it can be used as a good baseline for further comparison. © 2012 IEEE.
Resumo:
In this thesis we made the first steps towards the systematic application of a methodology for automatically building formal models of complex biological systems. Such a methodology could be useful also to design artificial systems possessing desirable properties such as robustness and evolvability. The approach we follow in this thesis is to manipulate formal models by means of adaptive search methods called metaheuristics. In the first part of the thesis we develop state-of-the-art hybrid metaheuristic algorithms to tackle two important problems in genomics, namely, the Haplotype Inference by parsimony and the Founder Sequence Reconstruction Problem. We compare our algorithms with other effective techniques in the literature, we show strength and limitations of our approaches to various problem formulations and, finally, we propose further enhancements that could possibly improve the performance of our algorithms and widen their applicability. In the second part, we concentrate on Boolean network (BN) models of gene regulatory networks (GRNs). We detail our automatic design methodology and apply it to four use cases which correspond to different design criteria and address some limitations of GRN modeling by BNs. Finally, we tackle the Density Classification Problem with the aim of showing the learning capabilities of BNs. Experimental evaluation of this methodology shows its efficacy in producing network that meet our design criteria. Our results, coherently to what has been found in other works, also suggest that networks manipulated by a search process exhibit a mixture of characteristics typical of different dynamical regimes.
Resumo:
The Association of American Colleges and Universities presented and promoted integrative liberal learning as a collaborative goal that all institutions of higher education must strive to achieve. The similarities between the goals of integrative liberal learning and the Standards for Academic Advising by the Council for the Advancement of Standards in Higher Education are discussed with emphasis placed on the critical role that academic advising plays in support of an integrative liberal learning education, and in turn, future success for all students.
Resumo:
Describes the effects that institutionalization of peer tutoring is having on the teaching-learning relationship.