994 resultados para Coastal engineering


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The framework of sediment budget concepts provides a formalized procedure to account for the various components of sediment flux and the changes of volume that occur within a given region. Sediment budget methodology can be useful in a number of coastal engineering and research applications, including: inferring the amount of onshore sediment transport for a nearshore system that contains an "excess of sediment", determining sediment deficits to downdrift beaches as a result of engineering works at navigational entrances, evaluating the performance of a beach nourishment project, inferring the distribution of longshore sediment transport across the surf zone, etc. This chapter reviews briefly the governing equations for sediment budget calculations, considers various measurement and other bases for determining the sediment flux components necessary to apply the sediment budget concept and finally for illustration purposes, applies the sediment budget concept to several examples. (PDF contains 52 pages.)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The calculation of settling speed of coarse particles is firstly addressed, with accelerated Stokesian dynamics without adjustable parameters, in which far field force acting on the particle instead of particle velocity is chosen as dependent variables to consider inter-particle hydrodynamic interactions. The sedimentation of a simple cubic array of spherical particles is simulated and compared to the results available to verify and validate the numerical code and computational scheme. The improvedmethod keeps the same computational cost of the order O(N log N) as usual accelerated Stokesian dynamics does. Then, more realistic random suspension sedimentation is investigated with the help ofMont Carlo method. The computational results agree well with experimental fitting. Finally, the sedimentation of finer cohesive particle, which is often observed in estuary environment, is presented as a further application in coastal engineering.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Devido a sua grande extensão latitudinal, a costa brasileira é influenciada por diferentes regimes climáticos e oceanográficos. Adicionalmente, a distribuição da população brasileira é caracterizada por uma alta concentração nas capitais litorâneas. Todos esses fatores levam à construção de inúmeras estruturas de engenharia que podem de alguma forma impactar o transporte de sedimento e consequentemente o balanço sedimentar de algumas praias. Uma das formas mais eficientes de recuperar esse balanço sedimentar é a alimentação artificial de praias, com sedimentos provenientes da plataforma continental com características semelhantes. Os métodos geofísicos acústicos permitem mapear de forma eficiente o fundo e o subfundo marinho para a busca de áreas fontes para a lavra de forma eficiente. O objetivo deste estudo é a identificação de padrões geoacústicos a partir de analises quantitativas e qualitativas, para a caracterização de áreas fontes de areias siliciclásticas compatíveis com sedimentos de praias em erosão na cidade do Rio de Janeiro. O mapeamento foi realizado na plataforma continental interna do Rio de Janeiro, em área adjacente à praia de Itaipuaçu (Maricá, RJ). As análises evidenciaram depósitos, localizados entre 19 e 30 metros, de areias com granulometria, textura e selecionamento em condições ideias para a recomposição de praias do Rio de Janeiro.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A number of ocean science fields have profitted, either directly or indirectly from satellite remote sensing, including physical, biological and geological oceanography. User oriented applications include fishing, shipping, offshore drilling and mining, coastal engineering and coastal hydrology. Following a brief account of the technology involved, areas in oceanography benefitting from satellite information are detailed. Examples are given of satellite data applications to marine resources.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper is the third part of a report on systematic measurements and analyses of wind-generated water waves in a laboratory environment. The results of the measurements of the turbulent flow on the water side are presented here, the details of which include the turbulence structure, the correlation functions, and the length and velocity scales. It shows that the mean turbulent velocity profiles are logarithmic, and the flows are hydraulically rough. The friction velocity in the water boundary layer is an order of magnitude smaller than that in the wind boundary layer. The level of turbulence is enhanced immediately beneath the water surface due to micro-breaking, which reflects that the Reynolds shear stress is of the order u *w 2. The vertical velocities of the turbulence are related to the relevant velocity scale at the still-water level. The autocorrelation function in the vertical direction shows features of typical anisotropic turbulence comprising a large range of wavelengths. The ratio between the microscale and macroscale can be expressed as λ/Λ=a Re Λ n, with the exponent n slightly different from -1/2, which is the value when turbulence production and dissipation are in balance. On the basis of the wavelength and turbulent velocity, the free-surface flows in the present experiments fall into the wavy free-surface flow regime. The integral turbulent scale on the water side alone underestimates the degree of disturbance at the free surface. © 2012 Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study detailed the structure of turbulence in the air-side and water-side boundary layers in wind-induced surface waves. Inside the air boundary layer, the kurtosis is always greater than 3 (the value for normal distribution) for both horizontal and vertical velocity fluctuations. The skewness for the horizontal velocity is negative, but the skewness for the vertical velocity is always positive. On the water side, the kurtosis is always greater than 3, and the skewness is slightly negative for the horizontal velocity and slightly positive for the vertical velocity. The statistics of the angle between the instantaneous vertical fluctuation and the instantaneous horizontal velocity in the air is similar to those obtained over solid walls. Measurements in water show a large variance, and the peak is biased towards negative angles. In the quadrant analysis, the contribution of quadrants Q2 and Q4 is dominant on both the air side and the water side. The non-dimensional relative contributions and the concentration match fairly well near the interface. Sweeps in the air side (belonging to quadrant Q4) act directly on the interface and exert pressure fluctuations, which, in addition to the tangential stress and form drag, lead to the growth of the waves. The water drops detached from the crest and accelerated by the wind can play a major role in transferring momentum and in enhancing the turbulence level in the water side.On the air side, the Reynolds stress tensor's principal axes are not collinear with the strain rate tensor, and show an angle α σ≈=-20°to-25°. On the water side, the angle is α σ≈=-40°to-45°. The ratio between the maximum and the minimum principal stresses is σ a/σ b=3to4 on the air side, and σ a/σ b=1.5to3 on the water side. In this respect, the air-side flow behaves like a classical boundary layer on a solid wall, while the water-side flow resembles a wake. The frequency of bursting on the water side increases significantly along the flow, which can be attributed to micro-breaking effects - expected to be more frequent at larger fetches. © 2012 Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Based on the second-order random wave solutions of water wave equations in finite water depth, a joint statistical distribution of two-point sea surface elevations is derived by using the characteristic function expansion method. It is found that the joint distribution depends on five parameters. These five parameters can all be determined by the water depth, the relative position of two points and the wave-number spectrum of ocean waves. As an illustrative example, for fully developed wind-generated sea, the parameters that appeared in the joint distribution are calculated for various wind speeds, water depths and relative positions of two points by using the Donelan and Pierson spectrum and the nonlinear effects of sea waves on the joint distribution are studied. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Based on the second-order random wave solutions of water wave equations in finite water depth, a statistical distribution of the wave-surface elevation is derived by using the characteristic function expansion method. It is found that the distribution, after normalization of the wave-surface elevation, depends only on two parameters. One parameter describes the small mean bias of the surface produced by the second-order wave-wave interactions. Another one is approximately proportional to the skewness of the distribution. Both of these two parameters can be determined by the water depth and the wave-number spectrum of ocean waves. As an illustrative example, we consider a fully developed wind-generated sea and the parameters are calculated for various wind speeds and water depths by using Donelan and Pierson spectrum. It is also found that, for deep water, the dimensionless distribution reduces to the third-order Gram-Charlier series obtained by Longuet-Higgins [J. Fluid Mech. 17 (1963) 459]. The newly proposed distribution is compared with the data of Bitner [Appl. Ocean Res. 2 (1980) 63], Gaussian distribution and the fourth-order Gram-Charlier series, and found our distribution gives a more reasonable fit to the data. (C) 2002 Elsevier Science B.V. All rights reserved.