994 resultados para Ciclo Diesel


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a recently introduced model-based method for precedent-free fault detection and isolation (FDI) is modified to deal with multiple input, multiple output (MIMO) systems and is applied to an automotive engine with exhaust gas recirculation (EGR) system. Using normal behavior data generated by a high fidelity engine simulation, the growing structure multiple model system (GSMMS) approach is used to construct dynamic models of normal behavior for the EGR system and its constituent subsystems. Using the GSMMS models as a foundation, anomalous behavior is detected whenever statistically significant departures of the most recent modeling residuals away from the modeling residuals displayed during normal behavior are observed. By reconnecting the anomaly detectors (ADs) to the constituent subsystems, EGR valve, cooler, and valve controller faults are isolated without the need for prior training using data corresponding to particular faulty system behaviors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis investigates condition monitoring (CM) of diesel engines using acoustic emission (AE) techniques. The AE signals recorded from a small size diesel engine are mixtures of multiple sources from multiple cylinders. Thus, it is difficult to interpret the information conveyed in the signals for CM purposes. This thesis develops a series of practical signal processing techniques to overcome this problem. Various experimental studies conducted to assess the CM capabilities of AE analysis for diesel engines. A series of modified signal processing techniques were proposed. These techniques showed promising results of capability for CM of multiple cylinders diesel engine using multiple AE sensors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to rapidly diminishing international supplies of fossil fuels, such as petroleum and diesel, the cost of fuel is constantly increasing, leading to higher costs of living, as a result of the significant reliance of many industries on motor vehicles. Many technologies have been developed to replace part or all of a fossil fuel with bio-fuels. One of the dual fuel technologies is fumigation of ethanol in diesel engines, which injects ethanol into the intake air stream of the engine. The advantage of this is that it avoids any costly modification of the engine high pressure diesel injection system, while reducing the volume of diesel required and potentially increasing the power output and efficiency. This paper investigates the performance of a diesel engine, converted to implement ethanol fumigation. The project will use both existing experimental data, along with generating computer modeled results using the program AVL Boost. The data from both experiments and the numerical simulation indicate desirable results for the peak pressure and the indicated mean effective pressure (IMEP). Increase in ethanol substitution resulted in elevated combustion pressure and an increase in the IMEP, while the variation of ethanol injection location resulted in negligible change. These increases in cylinder pressure led to a higher work output and total efficiency in the engine as the ethanol substitution was increased. In comparing the numerical and experimental results, the simulation showed a slight elevation, due to the inaccuracies in the heat release models. Future work is required to improve the combustion model and investigate the effect of the variation of the location of ethanol injection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Continuous monitoring of diesel engine performance is critical for early detection of fault developments in an engine before they materialize into a functional failure. Instantaneous crank angular speed (IAS) analysis is one of a few nonintrusive condition monitoring techniques that can be utilized for such a task. Furthermore, the technique is more suitable for mass industry deployments than other non-intrusive methods such as vibration and acoustic emission techniques due to the low instrumentation cost, smaller data size and robust signal clarity since IAS is not affected by the engine operation noise and noise from the surrounding environment. A combination of IAS and order analysis was employed in this experimental study and the major order component of the IAS spectrum was used for engine loading estimation and fault diagnosis of a four-stroke four-cylinder diesel engine. It was shown that IAS analysis can provide useful information about engine speed variation caused by changing piston momentum and crankshaft acceleration during the engine combustion process. It was also found that the major order component of the IAS spectra directly associated with the engine firing frequency (at twice the mean shaft rotating speed) can be utilized to estimate engine loading condition regardless of whether the engine is operating at healthy condition or with faults. The amplitude of this order component follows a distinctive exponential curve as the loading condition changes. A mathematical relationship was then established in the paper to estimate the engine power output based on the amplitude of this order component of the IAS spectrum. It was further illustrated that IAS technique can be employed for the detection of a simulated exhaust valve fault in this study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years fine and ultra fine particles emitted from internal combustion engines have attracted an increasing level of attention. This attention has arisen from epidemiological studies conducted by a number of research groups and pointing to the health effects resulting from inhalation of fine particles. Previous studies on the influence of fuel sulfur level on diesel vehicle emissions were mainly concentrated on particle mass emissions. This study aims at investigating the influence of the reduction of diesel fuel sulfur level on the emission and formation of nanoparticles

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exhaust emissions were monitored in real-time at the kerb of a busy busway used by a mix of diesel and CNG-powered transport buses. Particle number concentration in the size range 3 nm to 3 µm was measured with a TSI condensation particle counter (CPC 3025). Particle mass (PM2.5) was measured with a TSI Dustrak 8520. The CO2 emissions were measured with a fast response CO2 analyser (Sable CA-10A). All emission concentrations were recorded in real time at 1 sec resolution, together with the precise passage times of buses. The instantaneous ratio of particle number (or mass) to CO2 concentration, denoted Z, was used as a measure of the particle number (or mass) emission factor of each passing bus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analysis of the emissions from 14 CNG and 5 Diesel buses was conducted during April & May, 2006. Studies were conducted at both steady state and transient driving modes on a vehicle dynamometer utilising a CVS dilution system. This article will focus on the volatile properties of particles from 4 CNG and 4 Diesel vehicles from within this group with a priority given to the previously un-investigated CNG emissions produced at transient loads. Particle number concentration data was collected by three CPC’s (TSI 3022, 3010 & 3782WCPC) having D50 cut-offs set to 5nm, 10nm & 20nm respectively. Size distribution data was collected using a TSI 3080 SMPS with a 3025 CPC during the steady state driving modes. During transient cycles mono-disperse “slices” of between 5nm & 25nm were measured. The volatility of these particles was determined by placing a thermodenuder before the 3022 and the SMPS and measuring the reduction in particle number concentration as the temperature in the thermodenuder was increased. This was then normalised against the total particle count given by the 3010 CPC to provide high resolution information on the reduction in particle concentration with respect to temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the biodiesel properties and effects of blends of oil methyl ester petroleum diesel on a CI direct injection diesel engine is investigated. Blends were obtained from the marine dinoflagellate Crypthecodinium cohnii and waste cooking oil. The experiment was conducted using a four-cylinder, turbo-charged common rail direct injection diesel engine at four loads (25%, 50%, 75% and 100%). Three blends (10%, 20% and 50%) of microalgae oil methyl ester and a 20% blend of waste cooking oil methyl ester were compared to petroleum diesel. To establish suitability of the fuels for a CI engine, the effects of the three microalgae fuel blends at different engine loads were assessed by measuring engine performance, i.e. mean effective pressure (IMEP), brake mean effective pressure (BMEP), in cylinder pressure, maximum pressure rise rate, brake-specific fuel consumption (BSFC), brake thermal efficiency (BTE), heat release rate and gaseous emissions (NO, NOx,and unburned hydrocarbons (UHC)). Results were then compared to engine performance characteristics for operation with a 20% waste cooking oil/petroleum diesel blend and petroleum diesel. In addition, physical and chemical properties of the fuels were measured. Use of microalgae methyl ester reduced the instantaneous cylinder pressure and engine output torque, when compared to that of petroleum diesel, by a maximum of 4.5% at 50% blend at full throttle. The lower calorific value of the microalgae oil methyl ester blends increased the BSFC, which ultimately reduced the BTE by up to 4% at higher loads. Minor reductions of IMEP and BMEP were recorded for both the microalgae and the waste cooking oil methyl ester blends at low loads, with a maximum of 7% reduction at 75% load compared to petroleum diesel. Furthermore, compared to petroleum diesel, gaseous emissions of NO and NOx, increased for operations with biodiesel blends. At full load, NO and NOx emissions increased by 22% when 50% microalgae blends were used. Petroleum diesel and a 20% blend of waste cooking oil methyl ester had emissions of UHC that were similar, but those of microalgae oil methyl ester/petroleum diesel blends were reduced by at least 50% for all blends and engine conditions. The tested microalgae methyl esters contain some long-chain, polyunsaturated fatty acid methyl esters (FAMEs) (C22:5 and C22:6) not commonly found in terrestrial-crop-derived biodiesels yet all fuel properties were satisfied or were very close to the ASTM 6751-12 and EN14214 standards. Therefore, Crypthecodinium cohnii- derived microalgae biodiesel/petroleum blends of up to 50% are projected to meet all fuel property standards and, engine performance and emission results from this study clearly show its suitability for regular use in diesel engines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effective fuel injector operation and efficient combustion are two of the most critical aspects when Diesel engine performance, efficiency and reliability are considered. Indeed, it is widely acknowledged that fuel injection equipment faults lead to increased fuel consumption, reduced power, greater levels of exhaust emissions and even unexpected engine failure. Previous investigations have identified fuel injector related acoustic emission activity as being caused by mechanisms such as fuel line pressure build-up; fuel flow through injector nozzles, injector needle opening and closing impacts and premixed combustion related pulses. Few of these investigations however, have attempted to categorise the close association and interrelation that exists between fuel injection equipment function and the acoustic emission generating mechanisms. Consequently, a significant amount of ambiguity remains in the interpretation and categorisation of injector related AE activity with respect to the functional characteristics of specific fuel injection equipment. The investigation presented addresses this ambiguity by detailing a study in which AE signals were recorded and analysed from two different Diesel engines employing the two commonly encountered yet fundamentally different types of fuel injection equipment. Results from tests in which faults were induced into fuel injector nozzles from both indirect-injection and direct-injection engines show that functional differences between the main types of fuel injection equipment results in acoustic emission activity which can be specifically related to the type of fuel injection equipment used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-thermal plasma (NTP) is a promising candidate for controlling engine exhaust emissions. Plasma is known as the fourth state of matter, where both electrons and positive ions co-exist. Both gaseous and particle emissions of diesel exhaust undergo chemical changes when they are exposed to plasma. In this project diesel particulate matter (DPM) mitigation from the actual diesel exhaust by using NTP technology has been studied. The effect of plasma, not only on PM mass but also on PM size distribution, physico-chemical structure of PM and PM removal mechanisms, has been investigated. It was found that NTP technology can significantly reduce both PM mass and number. However, under some circumstances particles can be formed by nucleation. Energy required to create the plasma with the current technology is higher than the benchmark set by the commonly used by the automotive industry. Further research will enable the mechanism of particle creation and energy consumption to be optimised.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental study has been performed to investigate the ignition delay of a modern heavy-duty common-rail diesel engine run with fumigated ethanol substitutions up to 40% on an energy basis. The ignition delay was determined through the use of statistical modelling in a Bayesian framework this framework allows for the accurate determination of the start of combustion from single consecutive cycles and does not require any differentiation of the in-cylinder pressure signal. At full load the ignition delay has been shown to decrease with increasing ethanol substitutions and evidence of combustion with high ethanol substitutions prior to diesel injection have also been shown experimentally and by modelling. Whereas, at half load increasing ethanol substitutions have increased the ignition delay. A threshold absolute air to fuel ratio (mole basis) of above ~110 for consistent operation has been determined from the inter-cycle variability of the ignition delay, a result that agrees well with previous research of other in-cylinder parameters and further highlights the correlation between the air to fuel ratio and inter-cycle variability. Numerical modelling to investigate the sensitivity of ethanol combustion has also been performed. It has been shown that ethanol combustion is sensitive to the initial air temperature around the feasible operating conditions of the engine. Moreover, a negative temperature coefficient region of approximately 900{1050 K (the approximate temperature at fuel injection) has been shown with for n-heptane and n-heptane/ethanol blends in the numerical modelling. A consequence of this is that the dominate effect influencing the ignition delay under increasing ethanol substitutions may rather be from an increase in chemical reactions and not from in-cylinder temperature. Further investigation revealed that the chemical reactions at low ethanol substitutions are different compared to the high (> 20%) ethanol substitutions.