973 resultados para Charge dipole interaction
Resumo:
Five G protein-coupled receptors (GPCRs) have been identified to be activated by free fatty acids (FFA). Among them, FFA1 (GPR40) and FFA4 (GPR120) bind long-chain fatty acids, FFA2 (GPR43) and FFA3 (GPR41) bind short-chain fatty acids and GPR84 binds medium-chain fatty acids. Free fatty acid receptors have now emerged as potential targets for the treatment of diabetes, obesity and immune diseases. The recent progress in crystallography of GPCRs has now enabled the elucidation of the structure of FFA1 and provided reliable templates for homology modelling of other FFA receptors. Analysis of the crystal structure and improved homology models, along with mutagenesis data and structure activity, highlighted an unusual arginine charge pairing interaction in FFA1-3 for receptor modulation, distinct structural features for ligand binding to FFA1 and FFA4 and an arginine of the second extracellular loop as a possible anchoring point for FFA at GPR84. Structural data will be helpful for searching novel small molecule modulators at the FFA receptors.
Resumo:
Using the treatment of Smith, et al.,1 charge distributions in several aliphatic alcohols and consequently their dipole moments have been evaluated. The dipole moments of trichloroethanol (2.04 D) and 1,3-dichloropropan-2-ol (2.11 D) have been measured in benzene solution at 35°. The results of evaluation and measurements are interpreted in terms of the occurrence of intramolecular interaction between the hydroxyl hydrogen and an acceptor atom X (halogen or oxygen) at the β-carbon atom.
Resumo:
Formal charge distributions in, and the electric dipole moments of, a few simple organogermanium compounds have been evaluated by the method of R. P. Smith et al. [J. Amer. Chem. Soc., 73(1951) 2263]. The difference between the experimental and calculated moments in the case of alkylhalogermanes is explained in terms of the pπ—dπ back bonding effect outweighing the electron releasing effect. In unsaturated compounds, the differences are attributed to possible mesmeric effects involving the expansion of the germanium valence shell.
Resumo:
A probe, 9-(anthrylmethyl)trimethylammonium chloride, 1, was prepared. 1 binds to calf-thymus DNA or Escherichia coli genomic DNA with high affinity, as evidenced from the absorption titration. Strong hypochromism, spectral broadening and red-shifts in the absorption spectra were observed. Half-reciprocal plot constructed from this experiment gave binding constant of 5±0.5×104 M−1 in base molarity. We employed this anthryl probe-DNA complex for studying the effects of addition of various surfactant to DNA. Surfactants of different charge types and chain lengths were used in this study and the effects of surfactant addition to such probe-DNA complex were compared with that of small organic cations or salts. Addition of either salts or cationic surfactants led to structural changes in DNA and under these conditions, the probe from the DNA-bound complex appeared to get released. However, the cationic surfactants could induce such release of the probe from the probe-DNA complex at a much lower concentration than that of the small organic cations or salts. In contrast the anionic surfactants failed to promote any destabilization of such probe-DNA complexes. The effects of additives on the probe-DNA complexes were also examined by using a different technique (fluorescence spectroscopy) using a different probe ethidium bromide. The association complexes formed between the cationic surfactants and the plasmid DNA pTZ19R, were further examined under agarose gel electrophoresis and could not be visualized by ethidium bromide staining presumably due to cationic surfactant-induced condensation of DNA. Most of the DNA from such association complexes can be recovered by extraction of surfactants with phenol-chloroform. Inclusion of surfactants and other additives into the DNA generally enhanced the DNA melting temperatures by a few °C and at high [surfactant], the corresponding melting profiles got broadened.
Resumo:
Experimental charge density distributions in two known conformational polymorphs (orange and yellow) of coumarin 314 dye are analyzed based on multipole modeling of X-ray diffraction data collected at 100 K. The experimental results are compared with the charge densities derived from multipole modeling of theoretical structure factors obtained from periodic quantum calculation with density functional theory (DFT) method and B3LYP/6-31G(d,p) level of theory. The presence of disorder at the carbonyl oxygen atom of ethoxycarbonyl group in the yellow form, which was not identified earlier, is addressed here. The investigationof intermolecular interactions, based on Hirshfeld surface analysis and topological properties via quantum theory of atoms in molecule and total electrostatic interaction energies, revealed significant differences between the polymorphs. The differences of electrostatic nature in these two polymorphic forms were unveiled via construction of three-dimensional deformation electrostatic potential maps plotted over the molecular surfaces. The lattice energies evaluated from ab initio calculations on the two polymorphic forms indicate that the yellow form is likely to be the most favorable thermodynamically. The dipole moments derived from experimental and theoretical charge densities and also from Lorentz tensor approach are compared with the single-molecule dipole moments. In each case, the differences of dipole moments between the polymorphs are identified.
Resumo:
The dipole moments of thioglycollic (2.28 D), β-mereaptopropionic (2.25 D), thiomalic (2.47 D), malic (3.12 D), and dithiodiacetic (3.17 D) acids have been measured in dioxan at 35° C. Using the scheme of Smith, Ree, Magee and Eyring, the formal charge distribution in and hence the electric moments of these acids have been evaluated, compared with the theoretical moments, and discussed in terms of their various possible structures. Infrared spectra of these acids (liquid and nujol mull) indicate association through hydrogen bonding. These bonds are broken in solution. © 1969.
Resumo:
The dipole moments of thioglycollic (2.28 D), β-mereaptopropionic (2.25 D), thiomalic (2.47 D), malic (3.12 D), and dithiodiacetic (3.17 D) acids have been measured in dioxan at 35° C. Using the scheme of Smith, Ree, Magee and Eyring, the formal charge distribution in and hence the electric moments of these acids have been evaluated, compared with the theoretical moments, and discussed in terms of their various possible structures. Infrared spectra of these acids (liquid and nujol mull) indicate association through hydrogen bonding. These bonds are broken in solution.
Resumo:
The formal charge distribution and hence the electric moments of a number of halosilanes and their methyl derivatives have been calculated by the method of Image and Image . The difference between the observed and the calculated values in simple halosilanes is attributed to a change in the hybridization of the terminal halogen atom and in methyl halosilanes to the enhanced electron release of the methyl group towards silicon compared with carbon.
Resumo:
A polymer containing electron-rich aromatic donors (1,5-dialkoxynaphthalene (DAN)) was coerced into a folded state by an external folding agent that contained an electron-deficient aromatic acceptor (pyromellitic diimide (PM)) unit. The donor-containing polymer was designed to carry a tertiary amine moiety in the linking segment, which served as an H-bonding site for reinforcing the interaction with the acceptor containing folding agent that also bore a carboxylic acid group. The H-bonding interaction of the carboxylic acid and the tertiary amine brings the PDI unit between two adjacent DAN units along the polymer backbone to induce charge-transfer (C-T) interactions, and this in turn causes the polymer chain to form a pleated structure. Evidence for the formation of such a pleated structure was obtained from NMR titration studies and also by monitoring the C-T band in their UV-visible spectra. By varying the length of the segment that links the PDI acceptor to the carboxylic acid group, we showed that the most effective folding agent was the one that had a single carbon spacer, as evident from the highest value of the association constant. Control experiments with propionic acid clearly demonstrated the importance of the additional C-T interactions for venerating the folded structures. Further, solution viscosity measurements in the presence of varying amounts of the folding agent revealed a gradual stiffening of the chain in the case of the PDI carrying carboxylic acid, whereas no such affect was seen in the case of simple propionic acid. These observations were supported by D FT calculations of the interactions of a dimeric model of the polymer with the various folding agents; here too the stability of the complex was seen to be highest in the case of the single carbon spacer.
Resumo:
The distribution of optical held and charge density in the interaction between ultraintense ultrashort pulse laser and plasma is studied by numerical computation. The plasma considered has an exponential density profile. which corresponds to isothermal expanding. Our calculation shows that electrons are pushed forward by the incident laser, but ions, due to their much greater inertia, remain stationary. The resulting charge displacement forms a strong electrostatic field in the plasma. After the interaction of laser pulse and plasma. electrostatic energy still exists even after the laser pulse and will be absorbed by the plasma finally. This serves as an explanation to the mechanism of laser energy deposited into plasma.
Resumo:
The electron density response of a uniform two-dimensional (2D) electron gas is investigated in the presence of a perpendicular magnetic field and Rashba spin-orbit interaction (SOI). It is found that, within the Hartree-Fock approximation, a charge density excitation mode below the cyclotron resonance frequency shows a mode softening behavior, when the spin-orbit coupling strength falls into a certain interval. This mode softening indicates that the ground state of an interacting uniform 2D electron gas may be driven by the Rashba SOI to undergo a phase transition to a nonuniform charge density wave state.