941 resultados para Characteristic Initial Value Problem


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação apresentada para obtenção do grau de Doutor em Matemática na especialidade de Equações Diferenciais, pela Universidade Nova de Lisboa,Faculdade de Ciências e Tecnologia

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For any vacuum initial data set, we define a local, non-negative scalar quantity which vanishes at every point of the data hypersurface if and only if the data are Kerr initial data. Our scalar quantity only depends on the quantities used to construct the vacuum initial data set which are the Riemannian metric defined on the initial data hypersurface and a symmetric tensor which plays the role of the second fundamental form of the embedded initial data hypersurface. The dependency is algorithmic in the sense that given the initial data one can compute the scalar quantity by algebraic and differential manipulations, being thus suitable for an implementation in a numerical code. The scalar could also be useful in studies of the non-linear stability of the Kerr solution because it serves to measure the deviation of a vacuum initial data set from the Kerr initial data in a local and algorithmic way.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new method to analyze timeinvariant linear networks allowing the existence of inconsistent initial conditions. This method is based on the use of distributions and state equations. Any time-invariant linear network can be analyzed. The network can involve any kind of pure or controlled sources. Also, the transferences of energy that occur at t=O are determined, and the concept of connection energy is introduced. The algorithms are easily implemented in a computer program.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This Thesis discusses the phenomenology of the dynamics of open quantum systems marked by non-Markovian memory effects. Non-Markovian open quantum systems are the focal point of a flurry of recent research aiming to answer, e.g., the following questions: What is the characteristic trait of non-Markovian dynamical processes that discriminates it from forgetful Markovian dynamics? What is the microscopic origin of memory in quantum dynamics, and how can it be controlled? Does the existence of memory effects open new avenues and enable accomplishments that cannot be achieved with Markovian processes? These questions are addressed in the publications forming the core of this Thesis with case studies of both prototypical and more exotic models of open quantum systems. In the first part of the Thesis several ways of characterizing and quantifying non-Markovian phenomena are introduced. Their differences are then explored using a driven, dissipative qubit model. The second part of the Thesis focuses on the dynamics of a purely dephasing qubit model, which is used to unveil the origin of non-Markovianity for a wide class of dynamical models. The emergence of memory is shown to be strongly intertwined with the structure of the spectral density function, as further demonstrated in a physical realization of the dephasing model using ultracold quantum gases. Finally, as an application of memory effects, it is shown that non- Markovian dynamical processes facilitate a novel phenomenon of timeinvariant discord, where the total quantum correlations of a system are frozen to their initial value. Non-Markovianity can also be exploited in the detection of phase transitions using quantum information probes, as shown using the physically interesting models of the Ising chain in a transverse field and a Coulomb chain undergoing a structural phase transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Baroclinic wave development is investigated for unstable parallel shear flows in the limit of vanishing normal-mode growth rate. This development is described in terms of the propagation and interaction mechanisms of two coherent structures, called counter-propagating Rossby waves (CRWs). It is shown that, in this limit of vanishing normal-mode growth rate, arbitrary initial conditions produce sustained linear amplification of the marginally neutral normal mode (mNM). This linear excitation of the mNM is subsequently interpreted in terms of a resonance phenomenon. Moreover, while the mathematical character of the normal-mode problem changes abruptly as the bifurcation point in the dispersion diagram is encountered and crossed, it is shown that from an initial-value viewpoint, this transition is smooth. Consequently, the resonance interpretation remains relevant (albeit for a finite time) for wavenumbers slightly different from the ones defining cut-off points. The results are further applied to a two-layer version of the classic Eady model in which the upper rigid lid has been replaced by a simple stratosphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we consider the impedance boundary value problem for the Helmholtz equation in a half-plane with piecewise constant boundary data, a problem which models, for example, outdoor sound propagation over inhomogeneous. at terrain. To achieve good approximation at high frequencies with a relatively low number of degrees of freedom, we propose a novel Galerkin boundary element method, using a graded mesh with smaller elements adjacent to discontinuities in impedance and a special set of basis functions so that, on each element, the approximation space contains polynomials ( of degree.) multiplied by traces of plane waves on the boundary. We prove stability and convergence and show that the error in computing the total acoustic field is O( N-(v+1) log(1/2) N), where the number of degrees of freedom is proportional to N logN. This error estimate is independent of the wavenumber, and thus the number of degrees of freedom required to achieve a prescribed level of accuracy does not increase as the wavenumber tends to infinity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we show stability and convergence for a novel Galerkin boundary element method approach to the impedance boundary value problem for the Helmholtz equation in a half-plane with piecewise constant boundary data. This problem models, for example, outdoor sound propagation over inhomogeneous flat terrain. To achieve a good approximation with a relatively low number of degrees of freedom we employ a graded mesh with smaller elements adjacent to discontinuities in impedance, and a special set of basis functions for the Galerkin method so that, on each element, the approximation space consists of polynomials (of degree $\nu$) multiplied by traces of plane waves on the boundary. In the case where the impedance is constant outside an interval $[a,b]$, which only requires the discretization of $[a,b]$, we show theoretically and experimentally that the $L_2$ error in computing the acoustic field on $[a,b]$ is ${\cal O}(\log^{\nu+3/2}|k(b-a)| M^{-(\nu+1)})$, where $M$ is the number of degrees of freedom and $k$ is the wavenumber. This indicates that the proposed method is especially commendable for large intervals or a high wavenumber. In a final section we sketch how the same methodology extends to more general scattering problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We solve an initial-boundary problem for the Klein-Gordon equation on the half line using the Riemann-Hilbert approach to solving linear boundary value problems advocated by Fokas. The approach we present can be also used to solve more complicated boundary value problems for this equation, such as problems posed on time-dependent domains. Furthermore, it can be extended to treat integrable nonlinearisations of the Klein-Gordon equation. In this respect, we briefly discuss how our results could motivate a novel treatment of the sine-Gordon equation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze a fully discrete spectral method for the numerical solution of the initial- and periodic boundary-value problem for two nonlinear, nonlocal, dispersive wave equations, the Benjamin–Ono and the Intermediate Long Wave equations. The equations are discretized in space by the standard Fourier–Galerkin spectral method and in time by the explicit leap-frog scheme. For the resulting fully discrete, conditionally stable scheme we prove an L2-error bound of spectral accuracy in space and of second-order accuracy in time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the two-point boundary value problem for stiff systems of ordinary differential equations. For systems that can be transformed to essentially diagonally dominant form with appropriate smoothness conditions, a priori estimates are obtained. Problems with turning points can be treated with this theory, and we discuss this in detail. We give robust difference approximations and present error estimates for these schemes. In particular we give a detailed description of how to transform a general system to essentially diagonally dominant form and then stretch the independent variable so that the system will satisfy the correct smoothness conditions. Numerical examples are presented for both linear and nonlinear problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the Dirichlet boundary value problem for the Helmholtz equation in a non-locally perturbed half-plane, this problem arising in electromagnetic scattering by one-dimensional rough, perfectly conducting surfaces. We propose a new boundary integral equation formulation for this problem, utilizing the Green's function for an impedance half-plane in place of the standard fundamental solution. We show, at least for surfaces not differing too much from the flat boundary, that the integral equation is uniquely solvable in the space of bounded and continuous functions, and hence that, for a variety of incident fields including an incident plane wave, the boundary value problem for the scattered field has a unique solution satisfying the limiting absorption principle. Finally, a result of continuous dependence of the solution on the boundary shape is obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The solution of an initial-boundary value problem for a linear evolution partial differential equation posed on the half-line can be represented in terms of an integral in the complex (spectral) plane. This representation is obtained by the unified transform introduced by Fokas in the 90's. On the other hand, it is known that many initial-boundary value problems can be solved via a classical transform pair, constructed via the spectral analysis of the associated spatial operator. For example, the Dirichlet problem for the heat equation can be solved by applying the Fourier sine transform pair. However, for many other initial-boundary value problems there is no suitable transform pair in the classical literature. Here we pose and answer two related questions: Given any well-posed initial-boundary value problem, does there exist a (non-classical) transform pair suitable for solving that problem? If so, can this transform pair be constructed via the spectral analysis of a differential operator? The answer to both of these questions is positive and given in terms of augmented eigenfunctions, a novel class of spectral functionals. These are eigenfunctions of a suitable differential operator in a certain generalised sense, they provide an effective spectral representation of the operator, and are associated with a transform pair suitable to solve the given initial-boundary value problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neonatal anoxia is a worldwide clinical problem that has serious and lasting consequences. The diversity of models does not allow complete reproducibility, so a standardized model is needed. In this study, we developed a rat model of neonatal anoxia that utilizes a semi-hermetic system suitable for oxygen deprivation. The validity of this model was confirmed using pulse oximetry, arterial gasometry, observation of skin color and behavior and analysis of Fos immunoreactivity in brain regions that function in respiratory control. For these experiments, 87 male albino neonate rats (Rattus norvegicus, lineage Wistar) aged approximate 30 postnatal hours were divided into anoxia and control groups. The pups were kept in an euthanasia polycarbonate chamber at 36 +/- 1 degrees C, with continuous 100% nitrogen gas flow at 3 L/min and 101.7 kPa for 25 min. The peripheral arterial oxygen saturation of the anoxia group decreased 75% from its initial value. Decreased pH and partial pressure of oxygen and increased partial pressure of carbon dioxide were observed in this group, indicating metabolic acidosis, hypoxia and hypercapnia. respectively. Analysis of neuronal activation showed Fos immunoreactivity in the solitary tract nucleus, the lateral reticular nucleus and the area postrema, confirming that those conditions activated areas related to respiratory control in the nervous system. Therefore, the proposed model of neonatal anoxia allows standardization and precise control of the anoxic condition, which should be of great value in indentifying both the mechanisms underlying neonatal anoxia and novel therapeutic strategies to combat or prevent this widespread public health problem. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An iterated deferred correction algorithm based on Lobatto Runge-Kutta formulae is developed for the efficient numerical solution of nonlinear stiff two-point boundary value problems. An analysis of the stability properties of general deferred correction schemes which are based on implicit Runge-Kutta methods is given and results which are analogous to those obtained for initial value problems are derived. A revised definition of symmetry is presented and this ensures that each deferred correction produces an optimal increase in order. Finally, some numerical results are given to demonstrate the superior performance of Lobatto formulae compared with mono-implicit formulae on stiff two-point boundary value problems. (C) 1998 Elsevier B.V. Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work the problem of a spacecraft bi-impulsive transfer between two given non coplanar elliptical orbits, with minimum fuel consumption, is solved considering a non-Keplerian force field (the perturbing forces include Earth gravity harmonics and atmospheric drag). The problem is transformed in the Two Point Boundary Value Problem. It is developed and implemented a new algorithm, that uses the analytical expressions developed here. A dynamics that considered a Keplerian force field was used to produce an initial guess to solve the Two Point Boundary Value Problem. Several simulations were performed to observe the spacecraft orbital behaviour by different kind of perturbations and constraints, on a fuel consumption optimization point of view. (C) 2002 COSPAR. Published by Elsevier B.V. Ltd. All rights reserved.