951 resultados para Central South Pacific
Resumo:
The growth parameters and the mortality rates of the Scomber japonicus peruanus (Chub mackerel) were studied based on monthly data of frequency of fork length classes obtained from commercial landings off the Peruvian coast from 1996 to 1998. The asymptotic body length and growth rate values obtained by the ELEFAN I (Electronic Length Frequency Analysis) ranged from 40.20 cm to 42.20 cm and from 0.38 to 0.39, respectively. The oscillation amplitude was 0.60; the Winter point values varied from 0.50 to 0.60 and the performance index from 2.79 to 2.84. The total mortality rate of the Chub mackerel obtained by the linearized catch curve oscillated between 1.68 and 3.35. The rate of fishing mortality varied from 1.16 to 2.78 and the exploitation rate from 0.68 to 0.84. The annual rate of natural mortality estimated by the Pauly`s method ranged from 0.52 to 0.53. The results obtained allow us to conclude that the longevity of the Chub mackerel was slightly over seven years.
Resumo:
The application of radiogenic isotopes to the study of Cenozoic circulation patterns in the South Pacific Ocean has been hampered by the fact that records from only equatorial Pacific deep water have been available. We present new Pb and Nd isotope time series for two ferromanganese crusts that grew from equatorial Pacific bottom water (D137-01, 'Nova', 7219 m water depth) and southwest Pacific deep water (63KD, 'Tasman', 1700 m water depth). The crusts were dated using 10Be/9Be ratios combined with constant Co-flux dating and yield time series for the past 38 and 23 Myr, respectively. The surface Nd and Pb isotope distributions are consistent with the present-day circulation pattern, and therefore the new records are considered suitable to reconstruct Eocene through Miocene paleoceanography for the South Pacific. The isotope time series of crusts Nova and Tasman suggest that equatorial Pacific deep water and waters from the Southern Ocean supplied the dissolved trace metals to both sites over the past 38 Myr. Changes in the isotopic composition of crust Nova are interpreted to reflect development of the Antarctic Circumpolar Current and changes in Pacific deep water circulation caused by the build up of the East Antarctic Ice Sheet. The Nd isotopic composition of the shallower water site in the southwest Pacific appears to have been more sensitive to circulation changes resulting from closure of the Indonesian seaway.
Resumo:
The reconstruction of low-latitude ocean-atmosphere interactions is one of the major issues of (paleo-)environmental studies. The trade winds, extending over 20° to 30° of latitude in both hemispheres, between the subtropical highs and the intertropical convergence zone, are major components of the atmospheric circulation and little is known about their long-term variability on geological time-scales, in particular in the Pacific sector. We present the modern spatial pattern of eolian-derived marine sediments in the eastern equatorial and subtropical Pacific (10°N to 25°S) as a reference data set for the interpretation of SE Pacific paleo-dust records. The terrigenous silt and clay fractions of 75 surface sediment samples have been investigated for their grain-size distribution and clay-mineral compositions, respectively, to identify their provenances and transport agents. Dust delivered to the southeast Pacific from the semi- to hyper-arid areas of Peru and Chile is rather fine-grained (4-8 µm) due to low-level transport within the southeast trade winds. Nevertheless, wind is the dominant transport agent and eolian material is the dominant terrigenous component west of the Peru-Chile Trench south of ~ 5°S. Grain-size distributions alone are insufficient to identify the eolian signal in marine sediments due to authigenic particle formation on the sub-oceanic ridges and abundant volcanic glass around the Galapagos Islands. Together with the clay-mineral compositions of the clay fraction, we have identified the dust lobe extending from the coasts of Peru and Chile onto Galapagos Rise as well as across the equator into the doldrums. Illite is a very useful parameter to identify source areas of dust in this smectite-dominated study area.
Resumo:
B/Ca ratios in Cibicides mundulus and Cibicides wuellerstorfi have been shown to correlate with the degree of calcite saturation in seawater (D[CO32-]). In the South Pacific, a region of high importance in the global carbon cycle, these species are not continuously present in down-core records. Small numbers of epibenthic foraminifera in samples present an additional challenge, which can be overcome by using laser ablation-inductively coupled-mass spectrometry (LA-ICP-MS). We present a laser ablation based core-top calibration for Cibicides cf. wuellerstorfi, a C. wuellerstorfi morphotype that is abundant in the South Pacific and extend the existing global core top calibration for C. mundulus and C. wuellerstorfi to this region. B/Ca in C. cf. wuellerstorfi are linearly correlated with D[CO32-] and possibly display a higher sensitivity to calcite saturation changes than C. wuellerstorfi. Trace element profiles through C. wuellerstorfi and C. mundulus reveal an intra-shell B/Ca variation of ±36% around the mean shell value. Mg/Ca and B/Ca display opposite trends along the shell. Both phenomena likely result from ontogenetic effects. Intra-shell variability equals intra-sample variability, mean sample B/Ca values can thus be reliably calculated from averaged spot results of single specimen. In the global B/Ca-D[CO32-] range, we observe an inverse relationship between water mass age and D[CO32-].
Resumo:
The radiogenic isotope composition of neodymium (Nd) and strontium (Sr) are useful tools to investigate present and past oceanic circulation or input of terrigenous material. We present Nd and Sr isotope compositions extracted from different sedimentary phases, including early diagenetic Fe-Mn coatings, "unclean" foraminiferal shells, fossil fish teeth, and detritus of marine surface sediments (core-tops) covering the entire midlatitude South Pacific. Comparison of detrital Nd isotope compositions to deep water values from the same locations suggests that "boundary exchange" has little influence on the Nd isotope composition of western South Pacific seawater. Concentrations of Rare Earth Elements (REE) and Al/Ca ratios of "unclean" planktonic foraminifera suggest that this phase is a reliable recorder of seawater Nd isotope composition. The signatures obtained from fish teeth and "nondecarbonated" leachates of bulk sediment Fe-Mn oxyhydroxide coatings also agree with "unclean" foraminifera. Direct comparison of Nd isotope compositions extracted using these methods with seawater Nd isotope compositions is complicated by the low accumulation rates yielding radiocarbon ages of up to 24 kyr, thus mixing the signal of different ocean circulation modes. This suggests that different past seawater Nd isotope compositions have been integrated in authigenic sediments from regions with low sedimentation rates. Combined detrital Nd and Sr isotope signatures indicate a dominant role of the Westerly winds transporting lithogenic material from South New Zealand and Southeastern Australia to the open South Pacific. The proportion of this material decreases toward the east, where supply from the Andes increases and contributions from Antarctica cannot be ruled out.
Resumo:
Despite its enormous extent and importance for global climate, the South Pacific has been poorly investigated in comparison to other regions with respect to chemical oceanography. Here we present the first detailed analysis of dissolved radiogenic Nd isotopes (epsilon-Nd) and rare earth elements (REEs) in intermediate and deep waters of the mid-latitude (~40°S) South Pacific along a meridional transect between South America and New Zealand. The goal of our study is to gain better insight into the distribution and mixing of water masses in the South Pacific and to evaluate the validity of Nd isotopes as a water mass tracer in this remote region of the ocean. The results demonstrate that biogeochemical cycling (scavenging processes in the Eastern Equatorial Pacific) and release of LREEs from the sediment clearly influence the distribution of the dissolved REE concentrations at certain locations. Nevertheless, the Nd isotope signatures clearly trace water masses including AAIW (Antarctic Intermediate Water) (average epsilon-Nd = -8.2 ± 0.3), LCDW (Lower Circumpolar Deep Water) (average epsilon-Nd = -8.3 ± 0.3), NPDW (North Pacific Deep Water) (average epsilon-Nd = -5.9 ± 0.3), and the remnants of NADW (North Atlantic Deep Water) (average epsilon-Nd = -9.7 ± 0.3). Filtered water samples taken from the sediment-water interface under the deep western boundary current off New Zealand suggest that boundary exchange processes are limited at this location and highlight the spatial and temporal variability of this process. These data will serve as a basis for the paleoceanographic application of Nd isotopes in the South Pacific.
Resumo:
Investigating the inter-basin deep water exchange between the Pacific and Atlantic Oceans over glacial-interglacial climate cycles is important for understanding circum-Antarctic Southern Ocean circulation changes and their impact on the global Meridional Overturning Circulation. We use benthic foraminiferal d13C records from the southern East Pacific Rise to characterize the d13C composition of Circumpolar Deep Water in the South Pacific, prior to its transit through the Drake Passage into the South Atlantic. A comparison with published South Atlantic deep water records from the northern Cape Basin suggests a continuous water mass exchange throughout the past 500 ka. Almost identical glacial-interglacial d13C variations imply a common deep water evolution in both basins suggesting persistent Circumpolar Deep Water exchange and homogenization. By contrast, deeper abyssal waters occupying the more southern Cape Basin and the southernmost South Atlantic have lower d13C values during most, but not all, stadial periods. We conclude that these values represent the influence of a more southern water mass, perhaps AABW. During many interglacials and some glacial periods, the gradient between Circumpolar Deep Water and the deeper southern Cape Basin bottom water disappears suggesting either no presence of AABW or indistinguishable d13C values of both water masses.