902 resultados para Cellular defense


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the important physiological role of periosteum in the pathogenesis and treatment of osteoporosis, little is known about the structural and cellular characteristics of periosteum in osteoporosis. To study the structural and cellular differences in both diaphyseal and metaphyseal periosteum of osteoporotic rats, samples from the right femur of osteoporotic and normal female Lewis rats were collected and tissue sections were stained with hematoxylin and eosin, antibodies or staining kit against tartrate resistant acid phosphatase (TRAP), alkaline phosphatase (ALP), vascular endothelial growth factor (VEGF), von Willebrand (vWF), tyrosine hydroxylase (TH) and calcitonin gene-related peptide (CGRP). The results showed that the osteoporotic rats had much thicker and more cellular cambial layer of metaphyseal periosteum compared with other periosteal areas and normal rats (P\0.001). The number of TRAP? osteoclasts in bone resorption pits, VEGF? cells and the degree of vascularization were found to be greater in the cambial layer of metaphyseal periosteum of osteoporotic rats (P\0.05), while no significant difference was detected in the number of ALP? cells between the two groups. Sympathetic nerve fibers identified by TH staining were predominantly located in the cambial layer of metaphyseal periosteum of osteoporotic rats. No obvious difference in the expression of CGRP between the two groups was found. In conclusion, periosteum may play an important role in the cortical bone resorption in osteoporotic rats and this pathological process may be regulated by the sympathetic nervous system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Engineered tissue grafts, which mimic the spatial variations of cell density and extracellular matrix present in native tissues, could facilitate more efficient tissue regeneration and integration. We previously demonstrated that cells could be uniformly seeded throughout a 3D scaffold having a random pore architecture using a perfusion bioreactor2. In this work, we aimed to generate 3D constructs with defined cell distributions based on rapid prototyped scaffolds manufactured with a controlled gradient in porosity. Computational models were developed to assess the influence of fluid flow, associated with pore architecture and perfusion regime, on the resulting cell distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is an urgent need to develop safe, effective, dual-purpose contraceptive agents that combine the prevention of pregnancy with protection against sexually transmitted diseases. Here we report the identification of a group of compounds that on contact with human spermatozoa induce a state of “spermostasis,” characterized by the extremely rapid inhibition of sperm movement without compromising cell viability. These spermostatic agents were more active and significantly less toxic than the reagent in current clinical use, nonoxynol 9, giving therapeutic indices (ratio of spermostatic to cytotoxic activity) that were orders of magnitude greater than this traditional spermicide. Although certain compounds could trigger reactive oxygen species generation by spermatozoa, this activity was not correlated with spermostasis. Rather, the latter was associated with alkylation of two major sperm tail proteins that were identified as A Kinase-Anchoring Proteins (AKAP3 and AKAP4) by mass spectrometry. As a consequence of disrupted AKAP function, the abilities of cAMP to drive protein kinase A-dependent activities in the sperm tail, such as the activation of SRC and the consequent stimulation of tyrosine phosphorylation, were suppressed. Furthermore, analysis of microbicidal activity using Chlamydia muridarum revealed powerful inhibitory effects at the same low micromolar doses that suppressed sperm movement. In this case, the microbicidal action was associated with alkylation of Major Outer Membrane Protein (MOMP), a major chlamydial membrane protein. Taken together, these results have identified for the first time a novel set of cellular targets and chemical principles capable of providing simultaneous defense against both fertility and the spread of sexually transmitted disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studying the rate of cell migration provides insight into fundamental cell biology as well as a tool to assess the functionality of synthetic surfaces and soluble environments used in tissue engineering. The traditional tools used to study cell migration include the fence and wound healing assays. In this paper we describe the development of a microchannel based device for the study of cell migration on defined surfaces. We demonstrate that this device provides a superior tool, relative to the previously mentioned assays, for assessing the propagation rate of cell wave fronts. The significant advantage provided by this technology is the ability to maintain a virgin surface prior to the commencement of the cell migration assay. Here, the device is used to assess rates of mouse fibroblasts (NIH 3T3) and human osteosarcoma (SaOS2) cell migration on surfaces functionalized with various extracellular matrix proteins as a demonstration that confining cell migration within a microchannel produces consistent and robust data. The device design enables rapid and simplistic assessment of multiple repeats on a single chip, where surfaces have not been previously exposed to cells or cellular secretions.