867 resultados para Cascaded classifier


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an automatic modulation classifier for electronic warfare applications. It is a pattern recognition modulation classifier based on statistical features of the phase and instantaneous frequency. This classifier runs in a real time operation mode with sampling rates in excess of 1 Gsample/s. The hardware platform for this application is a Field Programmable Gate Array (FPGA). This AMC is subsidiary of a digital channelised receiver also implemented in the same platform.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In ubiquitous data stream mining applications, different devices often aim to learn concepts that are similar to some extent. In these applications, such as spam filtering or news recommendation, the data stream underlying concept (e.g., interesting mail/news) is likely to change over time. Therefore, the resultant model must be continuously adapted to such changes. This paper presents a novel Collaborative Data Stream Mining (Coll-Stream) approach that explores the similarities in the knowledge available from other devices to improve local classification accuracy. Coll-Stream integrates the community knowledge using an ensemble method where the classifiers are selected and weighted based on their local accuracy for different partitions of the feature space. We evaluate Coll-Stream classification accuracy in situations with concept drift, noise, partition granularity and concept similarity in relation to the local underlying concept. The experimental results show that Coll-Stream resultant model achieves stability and accuracy in a variety of situations using both synthetic and real world datasets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Performing activity recognition using the information provided by the different sensors embedded in a smartphone face limitations due to the capabilities of those devices when the computations are carried out in the terminal. In this work a fuzzy inference module is implemented in order to decide which classifier is the most appropriate to be used at a specific moment regarding the application requirements and the device context characterized by its battery level, available memory and CPU load. The set of classifiers that is considered is composed of Decision Tables and Trees that have been trained using different number of sensors and features. In addition, some classifiers perform activity recognition regardless of the on-body device position and others rely on the previous recognition of that position to use a classifier that is trained with measurements gathered with the mobile placed on that specific position. The modules implemented show that an evaluation of the classifiers allows sorting them so the fuzzy inference module can choose periodically the one that best suits the device context and application requirements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objective of the current research was to search the optimum method to segregate the most frequent color commercial quality classes of tobacco leaves (c.v. "Virginia"). These color classes cover the whole continuous color scale, between "Pale Lemon" and "Oxidated Brown". With the usual expert classification there exists a significant level of uncertainty . Within this research, several methods for data discrimination were tested, in order to solve uncertainty. Classification errors below 5% were obtained with this proposed classifier along two different seasons (1994&1995).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Along the recent years, several moving object detection strategies by non-parametric background-foreground modeling have been proposed. To combine both models and to obtain the probability of a pixel to belong to the foreground, these strategies make use of Bayesian classifiers. However, these classifiers do not allow to take advantage of additional prior information at different pixels. So, we propose a novel and efficient alternative Bayesian classifier that is suitable for this kind of strategies and that allows the use of whatever prior information. Additionally, we present an effective method to dynamically estimate prior probability from the result of a particle filter-based tracking strategy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electronic devices endowed with camera platforms require new and powerful machine vision applications, which commonly include moving object detection strategies. To obtain high-quality results, the most recent strategies estimate nonparametrically background and foreground models and combine them by means of a Bayesian classifier. However, typical classifiers are limited by the use of constant prior values and they do not allow the inclusion of additional spatiodependent prior information. In this Letter, we propose an alternative Bayesian classifier that, unlike those reported before, allows the use of additional prior information obtained from any source and depending on the spatial position of each pixel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multi-label classification (MLC) is the supervised learning problem where an instance may be associated with multiple labels. Modeling dependencies between labels allows MLC methods to improve their performance at the expense of an increased computational cost. In this paper we focus on the classifier chains (CC) approach for modeling dependencies. On the one hand, the original CC algorithm makes a greedy approximation, and is fast but tends to propagate errors down the chain. On the other hand, a recent Bayes-optimal method improves the performance, but is computationally intractable in practice. Here we present a novel double-Monte Carlo scheme (M2CC), both for finding a good chain sequence and performing efficient inference. The M2CC algorithm remains tractable for high-dimensional data sets and obtains the best overall accuracy, as shown on several real data sets with input dimension as high as 1449 and up to 103 labels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multi-dimensional classification (MDC) is the supervised learning problem where an instance is associated with multiple classes, rather than with a single class, as in traditional classification problems. Since these classes are often strongly correlated, modeling the dependencies between them allows MDC methods to improve their performance – at the expense of an increased computational cost. In this paper we focus on the classifier chains (CC) approach for modeling dependencies, one of the most popular and highest-performing methods for multi-label classification (MLC), a particular case of MDC which involves only binary classes (i.e., labels). The original CC algorithm makes a greedy approximation, and is fast but tends to propagate errors along the chain. Here we present novel Monte Carlo schemes, both for finding a good chain sequence and performing efficient inference. Our algorithms remain tractable for high-dimensional data sets and obtain the best predictive performance across several real data sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical filters are crucial elements in optical communications. The influence of cascaded filters in the optical signal will affect the communications quality seriously. In this paper we will study and simulate the optical signal impairment caused by different kinds of filters which include Butterworth, Bessel, Fiber Bragg Grating (FBG) and Fabry-Perot (FP). Optical signal impairment is analyzed from an Eye Opening Penalty (EOP) and optical spectrum point of view. The simulation results show that when the center frequency of all filters aligns with the laser’s frequency, the Butterworth has the smallest influence to the signal while the F-P has the biggest. With a -1dB EOP, the amount of cascaded Butterworth optical filters with a bandwidth of 50 GHz is 18 in 40 Gbps NRZ-DQPSK systems and 12 in 100 Gbps PMNRZ- DQPSK systems. The value is reduced to 9 and 6 respectively for Febry-Perot optical filters. In the situation of frequency misalignment, the impairment caused by filters is more serious. Our research shows that with a frequency deviation of 5 GHz, only 12 and 9 Butterworth optical filters can be cascaded in 40 Gbps NRZ-DQPSK and 100 Gbps PM-NRZ-DQPSK systems respectively. We also study the signal impairment caused by different orders of the Butterworth filter model. Our study shows that although the higher-order has a smaller clipping effect in the transmission spectrum, it will introduce a more serious phase ripple which seriously affects the signal. Simulation result shows that the 2nd order Butterworth filter has the best performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a novel robust visual tracking framework, based on discriminative method, for Unmanned Aerial Vehicles (UAVs) to track an arbitrary 2D/3D target at real-time frame rates, that is called the Adaptive Multi-Classifier Multi-Resolution (AMCMR) framework. In this framework, adaptive Multiple Classifiers (MC) are updated in the (k-1)th frame-based Multiple Resolutions (MR) structure with compressed positive and negative samples, and then applied them in the kth frame-based Multiple Resolutions (MR) structure to detect the current target. The sample importance has been integrated into this framework to improve the tracking stability and accuracy. The performance of this framework was evaluated with the Ground Truth (GT) in different types of public image databases and real flight-based aerial image datasets firstly, then the framework has been applied in the UAV to inspect the Offshore Floating Platform (OFP). The evaluation and application results show that this framework is more robust, efficient and accurate against the existing state-of-art trackers, overcoming the problems generated by the challenging situations such as obvious appearance change, variant illumination, partial/full target occlusion, blur motion, rapid pose variation and onboard mechanical vibration, among others. To our best knowledge, this is the first work to present this framework for solving the online learning and tracking freewill 2D/3D target problems, and applied it in the UAVs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The indefinite determiner yi 'one'+ classifier' is the most approximate to an indefinite article, like the English a, in Chinese. It serves all the functions characteristic of representative stages of grammaticalization from a numeral to a generalized indefinite determiner as elaborated in the literature. It is established in this paper that the Chinese indefinite determiner has developed a special use with definite expressions, serving as a backgrounding device marking entities as of low thematic importance and unlikely to receive subsequent mentions in ensuing discourse. 'yi+ classifier' in the special use with definite expressions displays striking similarities in terms of semantic bleaching and phonological reduction with the same determiner at the advanced stage of grammaticalization characterized by uses with generics, nonspecifics and nonreferentials. An explanation is offered in terms of an implicational relation between nonreferentiality and low thematic importance which characterize the two uses of the indefinite determiner. While providing another piece of evidence in support of the claim that semantically nonreferentials and entities of low thematic importance tend to be encoded in terms of same linguistic devices in language, findings in this paper have shown how an indefinite determiner can undergo a higher degree of grammaticalization than has been reported in the literature-it expands its scope to mark not only indefinite but also definite expressions as semantically nonreferential and/or thematically unimportant. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Merkel cell carcinoma (MCC) is a rare aggressive skin tumor which shares histopathological and genetic features with small-cell lung carcinoma (SCLC), both are of neuroendocrine origin. Comparable to SCLC, MCC cell lines are classified into two different biochemical subgroups designated as 'Classic' and 'Variant'. With the aim to identify typical gene-expression signatures associated with these phenotypically different MCC cell lines subgroups and to search for differentially expressed genes between MCC and SCLC, we used cDNA arrays to pro. le 10 MCC cell lines and four SCLC cell lines. Using significance analysis of microarrays, we defined a set of 76 differentially expressed genes that allowed unequivocal identification of Classic and Variant MCC subgroups. We assume that the differential expression levels of some of these genes reflect, analogous to SCLC, the different biological and clinical properties of Classic and Variant MCC phenotypes. Therefore, they may serve as useful prognostic markers and potential targets for the development of new therapeutic interventions specific for each subgroup. Moreover, our analysis identified 17 powerful classifier genes capable of discriminating MCC from SCLC. Real-time quantitative RT-PCR analysis of these genes on 26 additional MCC and SCLC samples confirmed their diagnostic classification potential, opening opportunities for new investigations into these aggressive cancers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Generalization performance in recurrent neural networks is enhanced by cascading several networks. By discretizing abstractions induced in one network, other networks can operate on a coarse symbolic level with increased performance on sparse and structural prediction tasks. The level of systematicity exhibited by the cascade of recurrent networks is assessed on the basis of three language domains. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New residential scale photovoltaic (PV) arrays are commonly connected to the grid by a single dc-ac inverter connected to a series string of pv panels, or many small dc-ac inverters which connect one or two panels directly to the ac grid. This paper proposes an alternative topology of nonisolated per-panel dc-dc converters connected in series to create a high voltage string connected to a simplified dc-ac inverter. This offers the advantages of a converter-per-panel approach without the cost or efficiency penalties of individual dc-ac grid connected inverters. Buck, boost, buck-boost, and Cuk converters are considered as possible dc-dc converters that can be cascaded. Matlab simulations are used to compare the efficiency of each topology as well as evaluating the benefits of increasing cost and complexity. The buck and then boost converters are shown to be the most efficient topologies for a given cost, with the buck best suited for long strings and the boost for short strings. While flexible in voltage ranges, buck-boost, and Cuk converters are always at an efficiency or alternatively cost disadvantage.