980 resultados para Cardinal B-Spline


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A many-body theory approach is developed for the problem of positron-atom scattering and annihilation. Strong electron- positron correlations are included nonperturbatively through the calculation of the electron-positron vertex function. It corresponds to the sum of an infinite series of ladder diagrams, and describes the physical effect of virtual positronium formation. The vertex function is used to calculate the positron-atom correlation potential and nonlocal corrections to the electron-positron annihilation vertex. Numerically, we make use of B-spline basis sets, which ensures rapid convergence of the sums over intermediate states. We have also devised an extrapolation procedure that allows one to achieve convergence with respect to the number of intermediate- state orbital angular momenta included in the calculations. As a test, the present formalism is applied to positron scattering and annihilation on hydrogen, where it is exact. Our results agree with those of accurate variational calculations. We also examine in detail the properties of the large correlation corrections to the annihilation vertex.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate the effect of correlated additive and multiplicative Gaussian white noise oil the Gompertzian growth of tumours. Our results are obtained by Solving numerically the time-dependent Fokker-Planck equation (FPE) associated with the stochastic dynamics. In Our numerical approach we have adopted B-spline functions as a truncated basis to expand the approximated eigenfunctions. The eigenfunctions and eigenvalues obtained using this method are used to derive approximate solutions of the dynamics under Study. We perform simulations to analyze various aspects, of the probability distribution. of the tumour cell populations in the transient- and steady-state regimes. More precisely, we are concerned mainly with the behaviour of the relaxation time (tau) to the steady-state distribution as a function of (i) of the correlation strength (lambda) between the additive noise and the multiplicative noise and (ii) as a function of the multiplicative noise intensity (D) and additive noise intensity (alpha). It is observed that both the correlation strength and the intensities of additive and multiplicative noise, affect the relaxation time.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper reports on work in developing a finite element (FE) based die shape optimisation for net-shape forging of 3D aerofoil blades for aeroengine applications. Quantitative representations of aerofoil forging tolerances were established to provide a correlation between conventional dimensional and shape specifications in forging production and those quantified in FE simulation. A new direct compensation method was proposed, employing variable weighting factors to minimise the total forging tolerances in forging optimisation computations. A surface approximation using a B-spline surface was also developed to ensure improved die surface quality for die shape representation and design. For a Ni-alloy blade test case, substantial reduction in dimensional and shape tolerances was achieved using the developed die shape optimisation system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A configuration-interaction approach, based on the use of B-spline basis sets combined with a model potential including monoelectronic and dielectronic core polarization effects, is employed to calculate term energies and wavefunctions for neutral Ca. Results are reported for singlet and triplet bound states, and some quasi-bound states above the lowest ionization limit, with angular momentum up to L = 4. Comparison with experiment and with other theoretical results shows that this method yields the most accurate energy values for neutral Ca obtained to date. Wavefunction compositions, necessary for labelling the levels, and the effects of semi-empirical polarization potentials on the wavefunctions are discussed, as are some recent identifications of doubly-excited states. It is shown that taking into account dielectronic core polarization changes the energies of the lowest terms in Ca significantly, in general by a few hundred cm(-1), the effect decreasing rapidly for the higher bound states. For Rydberg states with n approximate to 7 the accuracy of the results is often better than a few cm(-1). For series members (or perturbers) with a pronounced 3d character the error can reach 150 cm(-1). The wavefunctions are used to calculate oscillator strengths and lifetimes for a number of terms and these are compared with existing measurements. The agreement is good but points to a need for improved measurements.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The electronic redistribution of an ion or atom induced by a sudden recoil of the nucleus occurring during the emission or capture of a neutral particle is theoretically investigated. For one-electron systems, analytical expressions are derived for the electronic transition probabilities to bound and continuum states. The quality of a B-spline basis set approach is evaluated from a detailed comparison with the analytical results. This numerical approach is then used Io study the dynamics of two-electron systems (neutral He and Ne ) using correlated wavefunctions for both the target and daughter ions. The total transition probabilities to discrete states, autoionizing states and direct single- and double-ionization probabilities are calculated from the pseudospectra. Sum rules for transition probabilities involving an initial bound state and a complete final series are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have developed a method, based on the use of B-spline basis sets and model potentials, for determining properties of systems with two or three electrons outside a polarizable closed-shell core. It is applied to the calculation of the electron affinity of Ca and the resulting value of 17.7 meV is in excellent agreement with the most recent experiments. It is found that the dielectronic core-valence interaction reduces the electron affinity by 39.5 meV.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Diagrammatic many-body theory is used to calculate the scattering phase shifts, normalized annihilation rates Zeff, and annihilation ? spectra for positron collisions with the hydrogenlike ions He+, Li2+, B4+, and F8+. Short-range electron-positron correlations and longer-range positron-ion correlations are accounted for by evaluating nonlocal corrections to the annihilation vertex and the exact positron self-energy. The numerical calculation of the many-body theory diagrams is performed using B-spline basis sets. To elucidate the role of the positron-ion repulsion, the annihilation rate is also estimated analytically in the Coulomb-Born approximation. It is found that the energy dependence and magnitude of Zeff are governed by the Gamow factor that characterizes the suppression of the positron wave function near the ion. For all of the H-like ions, the correlation enhancement of the annihilation rate is found to be predominantly due to corrections to the annihilation vertex, while the corrections to the positron wave function play only a minor role. Results of the calculations for s-, p-, and d-wave incident positrons of energies up to the positronium-formation threshold are presented. Where comparison is possible, our values are in excellent agreement with the results obtained using other, e.g., variational, methods. The annihilation-vertex enhancement factors obtained in the present calculations are found to scale approximately as 1+(1.6+0.46l)/Zi, where Zi is the net charge of the ion and l is the positron orbital angular momentum. Our results for positron annihilation in H-like ions provide insights into the problem of positron annihilation with core electrons in atoms and condensed matter systems, which have similar binding energies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We introduce a time-dependent R-matrix theory generalized to describe double-ionization processes. The method is used to investigate two-photon double ionization of He by intense XUV laser radiation. We combine a detailed B-spline-based wave-function description in an extended inner region with a single-electron outer region containing channels representing both single ionization and double ionization. A comparison of wave-function densities for different box sizes demonstrates that the flow between the two regions is described with excellent accuracy. The obtained two-photon double-ionization cross sections are in excellent agreement with other cross sections available. Compared to calculations fully contained within a finite inner region, the present calculations can be propagated over the time it takes the slowest electron to reach the boundary.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the field of control systems it is common to use techniques based on model adaptation to carry out control for plants for which mathematical analysis may be intricate. Increasing interest in biologically inspired learning algorithms for control techniques such as Artificial Neural Networks and Fuzzy Systems is in progress. In this line, this paper gives a perspective on the quality of results given by two different biologically connected learning algorithms for the design of B-spline neural networks (BNN) and fuzzy systems (FS). One approach used is the Genetic Programming (GP) for BNN design and the other is the Bacterial Evolutionary Algorithm (BEA) applied for fuzzy rule extraction. Also, the facility to incorporate a multi-objective approach to the GP algorithm is outlined, enabling the designer to obtain models more adequate for their intended use.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this chapter is to introduce background concepts in nonlinear systems identification and control with artificial neural networks. As this chapter is just an overview, with a limited page space, only the basic ideas will be explained here. The reader is encouraged, for a more detailed explanation of a specific topic of interest, to consult the references given throughout the text. Additionally, as general books in the field of neural networks, the books by Haykin [1] and Principe et al. [2] are suggested. Regarding nonlinear systems identification, covering both classical and neural and neuro-fuzzy methodologies, Reference 3 is recommended. References 4 and 5 should be used in the context of B-spline networks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

All systems found in nature exhibit, with different degrees, a nonlinear behavior. To emulate this behavior, classical systems identification techniques use, typically, linear models, for mathematical simplicity. Models inspired by biological principles (artificial neural networks) and linguistically motivated (fuzzy systems), due to their universal approximation property, are becoming alternatives to classical mathematical models. In systems identification, the design of this type of models is an iterative process, requiring, among other steps, the need to identify the model structure, as well as the estimation of the model parameters. This thesis addresses the applicability of gradient-basis algorithms for the parameter estimation phase, and the use of evolutionary algorithms for model structure selection, for the design of neuro-fuzzy systems, i.e., models that offer the transparency property found in fuzzy systems, but use, for their design, algorithms introduced in the context of neural networks. A new methodology, based on the minimization of the integral of the error, and exploiting the parameter separability property typically found in neuro-fuzzy systems, is proposed for parameter estimation. A recent evolutionary technique (bacterial algorithms), based on the natural phenomenon of microbial evolution, is combined with genetic programming, and the resulting algorithm, bacterial programming, advocated for structure determination. Different versions of this evolutionary technique are combined with gradient-based algorithms, solving problems found in fuzzy and neuro-fuzzy design, namely incorporation of a-priori knowledge, gradient algorithms initialization and model complexity reduction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação de Mestrado, Engenharia Electrónica e Telecomunicações, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015

Relevância:

80.00% 80.00%

Publicador:

Resumo:

L’intérêt principal de cette recherche porte sur la validation d’une méthode statistique en pharmaco-épidémiologie. Plus précisément, nous allons comparer les résultats d’une étude précédente réalisée avec un devis cas-témoins niché dans la cohorte utilisé pour tenir compte de l’exposition moyenne au traitement : – aux résultats obtenus dans un devis cohorte, en utilisant la variable exposition variant dans le temps, sans faire d’ajustement pour le temps passé depuis l’exposition ; – aux résultats obtenus en utilisant l’exposition cumulative pondérée par le passé récent ; – aux résultats obtenus selon la méthode bayésienne. Les covariables seront estimées par l’approche classique ainsi qu’en utilisant l’approche non paramétrique bayésienne. Pour la deuxième le moyennage bayésien des modèles sera utilisé pour modéliser l’incertitude face au choix des modèles. La technique utilisée dans l’approche bayésienne a été proposée en 1997 mais selon notre connaissance elle n’a pas été utilisée avec une variable dépendante du temps. Afin de modéliser l’effet cumulatif de l’exposition variant dans le temps, dans l’approche classique la fonction assignant les poids selon le passé récent sera estimée en utilisant des splines de régression. Afin de pouvoir comparer les résultats avec une étude précédemment réalisée, une cohorte de personnes ayant un diagnostique d’hypertension sera construite en utilisant les bases des données de la RAMQ et de Med-Echo. Le modèle de Cox incluant deux variables qui varient dans le temps sera utilisé. Les variables qui varient dans le temps considérées dans ce mémoire sont iv la variable dépendante (premier évènement cérébrovasculaire) et une des variables indépendantes, notamment l’exposition

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neurofuzzy modelling systems combine fuzzy logic with quantitative artificial neural networks via a concept of fuzzification by using a fuzzy membership function usually based on B-splines and algebraic operators for inference, etc. The paper introduces a neurofuzzy model construction algorithm using Bezier-Bernstein polynomial functions as basis functions. The new network maintains most of the properties of the B-spline expansion based neurofuzzy system, such as the non-negativity of the basis functions, and unity of support but with the additional advantages of structural parsimony and Delaunay input space partitioning, avoiding the inherent computational problems of lattice networks. This new modelling network is based on the idea that an input vector can be mapped into barycentric co-ordinates with respect to a set of predetermined knots as vertices of a polygon (a set of tiled Delaunay triangles) over the input space. The network is expressed as the Bezier-Bernstein polynomial function of barycentric co-ordinates of the input vector. An inverse de Casteljau procedure using backpropagation is developed to obtain the input vector's barycentric co-ordinates that form the basis functions. Extension of the Bezier-Bernstein neurofuzzy algorithm to n-dimensional inputs is discussed followed by numerical examples to demonstrate the effectiveness of this new data based modelling approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper introduces a new neurofuzzy model construction algorithm for nonlinear dynamic systems based upon basis functions that are Bezier-Bernstein polynomial functions. This paper is generalized in that it copes with n-dimensional inputs by utilising an additive decomposition construction to overcome the curse of dimensionality associated with high n. This new construction algorithm also introduces univariate Bezier-Bernstein polynomial functions for the completeness of the generalized procedure. Like the B-spline expansion based neurofuzzy systems, Bezier-Bernstein polynomial function based neurofuzzy networks hold desirable properties such as nonnegativity of the basis functions, unity of support, and interpretability of basis function as fuzzy membership functions, moreover with the additional advantages of structural parsimony and Delaunay input space partition, essentially overcoming the curse of dimensionality associated with conventional fuzzy and RBF networks. This new modeling network is based on additive decomposition approach together with two separate basis function formation approaches for both univariate and bivariate Bezier-Bernstein polynomial functions used in model construction. The overall network weights are then learnt using conventional least squares methods. Numerical examples are included to demonstrate the effectiveness of this new data based modeling approach.