122 resultados para Carbonization.
Resumo:
Porous carbon aerogels are prepared by polycondensation of resorcinol (R) and formaldehyde (F)catalyzed by sodium carbonate (C) followed by carbonization of the resultant aerogels at 800? in an inert atmosphere. The porous texture of the carbons has been adjusted by the change of the molar ratio of resorcinol to catalyst (R/C) in the gel precursors in the range of 100 to 500. The porous structure of the aerogels and carbon aerogels are characterized by N2 adsorption-desorption measurements at 77 K. It is found that total pore volume and average pore diameter of the carbons increase with increase in the R/C ratio of the gel precursors.The prepared carbon aerogels are used as active materials in fabrication of composite carbon electrodes. The electrochemical performance of the electrodes has been tested by using them as cathodes in a Li/O2 cell. Through the galvanostatic charge/discharge measurements, it is found that with an increase of R/C ratio, the specific capacity of the Li/O2 cell fabricated from the carbon aerogels increases from 716 to 2077 charge/discharge cycles indicate that the carbon samples possess excellent stability on cycling.
Resumo:
Organic aerogels were synthesized by sol–gel polymerization of resorcinol (R) with formaldehyde (F) catalyzed by sodium carbonate (C) followed by vacuum drying. The influence of the resorcinol/sodium carbonate ratio (R/C) on the porous structure of the resultant aerogels was investigated. The nitrogen adsorption–desorption measurements show that the aerogels possess a well developed porous structure and mesoporosity was found to increase with increasing the R/C ratio. Carbon aerogels were obtained by carbonization of RF aerogels. The carbonization temperature impacts the microstructure of the aerogels by pore transformations during carbonization probably due to the formation of micropores and shrinkage of the gel structure. The results showed that a temperature of 1073 Kis more effective in the development of the pore structure of the gel. Activated carbon aerogels were obtained from the CO2 activation of carbon aerogels. Activation results in an increase in the number of both micropores and mesopores, indicative of pore creation in the structure of the carbon. Activation at higher temperatures results in a higher degree of burn off and increases the pore volume and the surface area remarkably without change of the basic porous structure, pore size, and pore size distribution.
Resumo:
Porous carbon aerogels are prepared by polycondensation of resorcinol and formaldehyde catalyzed by sodium carbonate followed by carbonization of the resultant aerogels in an inert atmosphere. Pore structure of carbon aerogels is adjusted by changing the molar ratio of resorcinol to catalyst during gel preparation and also pyrolysis under Ar and activation under CO2 atmosphere at different temperatures. The prepared carbons are used as active materials in fabrication of composite carbon electrodes. The electrochemical performance of the electrodes has been tested in a Li/O2 cell. Through the galvanostatic charge/discharge measurements, it is found that the cell performance (i.e. discharge capacity and discharge voltage) depends on the morphology of carbon and a combined effect of pore volume, pore size and surface area of carbon affects the storage capacity. A Li/O2 cell using the carbon with the largest pore volume (2.195cm3/g) and a wide pore size (14.23 nm) showed a specific capacity of 1290mAh g-1.
Resumo:
Carbon composite monoliths were prepared from a commercial phenolic resin mixed with just 1 wt% of carbon nanotubes (CNTs) followed by carbonization and physical activation with CO. The products possess a hierarchical macroporous-microporous structure and superior CO adsorption properties. In particular, they show the top-ranked CO capacity (52 mg CO per g adsorbent at 25 °C and 114 mmHg) under low CO partial pressures, which is of more relevance for flue gas applications. This matches or exceeds those of carbons produced by complex chemical activation and functionalization. Our study demonstrates an effective way to create narrow micropores through structural modification of carbon composites by CNTs. © 2013 The Royal Society of Chemistry.
Resumo:
Electric vehicles (EVs) and hybrid electric vehicles (HEVs) are rapidly gaining popularity as a means of de-carbonization in the transport sector in tackling sustainable energy supply and environment pollution problems. To build a proper battery model is essential in predicting battery behaviour under various operating conditions for avoiding unsafe battery operations and developing proper controlling algorithms and maintenance strategies. This paper presents a comprehensive review of battery modelling methods. In particular, the mechanism and characteristics of Li-ion batteries are presented, and different modelling methods are discussed. Considering that equivalent electric circuit models (EECMs) are the most widely used, a detailed analysis of the modelling procedure is presented.
Resumo:
Bioenergy derived from biomass provides a promising energy alternative and can reduce the greenhouse gas (GHG) emissions generated from fossil fuels. Biomass-based thermochemical conversion technologies have been acknowledged as apt options to convert bioresources into bioenergy; this bioenergy includes electricity, heat, and fuels/chemicals in solid, liquid, and gaseous phases. In this review, the techno-economic and life cycle assessment of these technologies (combustion, gasification, pyrolysis, liquefaction, carbonization, and co-firing) are summarized. Specific indicators (production costs in a techno-economic analysis, functional units and environmental impacts in a life cycle analysis) for different technologies were compared. Finally, gaps in research and future trends in biomass thermochemical conversion were identified. This review could be used to guide future research related to economic and environmental benefits of bioenergy.
Resumo:
Tungsten carbide/oxide particles have been prepared by the gel precipitation of tungstic acid in the presence of an organic gelling agent [10% ammonium poly(acrylic acid) in water, supplied by Ciba Specialty Chemicals]. The feed solution; a homogeneous mixture of sodium tungstate and ammonium poly(acrylic acid) in water, was dropped from a 1-mm jet into hydrochloric acid saturated hexanol/concentrated hydrochloric acid to give particles of a mixture of tungstic acid and poly(acrylic acid), which, after drying in air at 100 degrees C and heating to 900 degrees C in argon for 2 h, followed by heating in carbon dioxide for a further 2 h and cooling, gives a mixture of WO, WC, and a trace of NaxWO3, with the carbon for the formation of WC being provided by the thermal carbonization of poly(acrylic acid). The pyrolyzed product is friable and easily broken down in a pestle and mortar to a fine powder or by ultrasonics, in water, to form a stable colloid. The temperature of carbide formation by this process is significantly lower (900 degrees C) than that reported for the commercial preparation of tungsten carbide, typically > 1400 degrees C. In addition, the need for prolonged grinding of the constituents is obviated because the reacting moieties are already in intimate contact on a molecular basis. X-ray diffraction, particle sizing, transmission electron microscopy, surface area, and pore size distribution studies have been carried out, and possible uses are suggested. A flow diagram for the process is described.
Resumo:
O carvão vegetal tem um papel de destaque entre as biomassas consumidas no Brasil. Seu uso em larga escala na indústria siderúrgica para a produção de ferro gusa fez do país um dos maiores produtores e consumidores mundiais de carvão vegetal. A matéria-prima abundante, bem como a falta de preocupação com fatores ambientais e sociais, permitiu no passado que se atentasse apenas ao fator econômico; e a tecnologia de produção deste combustível/insumo se desenvolveu muito pouco ao longo de quase toda a sua história no Brasil até os anos mais recentes. Nas duas últimas décadas, quando se intensificou a preocupação social e ambiental e esses fatores ganharam relevância na análise da viabilidade de projetos tanto a serem implantados, quanto já existentes, a produção de carvão vegetal passou a ser identificada como extremamente rudimentar e impactante ao meio ambiente e sociedade onde se localiza. Neste trabalho buscou-se analisar a viabilidade econômica de quatro sistemas de produção de carvão existentes no Brasil. O sistema mais rudimentar, comumente chamado de “rabo quente”, um sistema ainda de alvenaria, com um pouco mais desenvolvimento tecnológico conhecido como forno retangular, e dois sistemas que utilizam fornos metálicos para buscar menor tempo do processo de carbonização (devido ao mais rápido resfriamento do sistema) e que têm, ambos, uma preocupação ambiental maior e buscam emitir menos poluentes e oferecer uma condição de trabalho mais adequada, refletindo também positivamente sob o aspecto sócio-ambiental. Percebe-se que em termos de implantação, obviamente, os sistemas que envolvem um pouco mais de tecnologia são bem mais dispendiosos em investimento inicial, porém, há resultados animadores do ponto de vista de retorno do investimento e possibilidades de agregação de valor que tendem a atrair o investimento especialmente dos grandes grupos siderúrgicos consumidores, que têm se preocupado cada vez mais em investir tanto na produção de matéria-prima, com grandes áreas de reflorestamento, quanto na produção sustentável do carvão vegetal.
Resumo:
A produção de carvão vegetal a partir de florestas plantadas mudou de forma determinante a logística desta atividade dotando-a de escala e fixando a estrutura de produção composta por fornos e periféricos. A lógica de se ter os fornos construídos ao lado das frentes de exploração florestal, e se deslocando junto com ela à medida em que a colheita é realizada foi abandonada. A partir de então, tem-se buscado uma forma de aproveitar a disponibilidade energética contida nos gases da carbonização, que segue sem uso, tendo quando muito um aproveitamento incipiente e marginal. Esta dissertação apresenta uma proposta de lay out para a Unidade de Produção de Carvão (UPC) de fornos retangulares tradicionais em alvenaria projetados e posicionados de forma a possibilitar seu acoplamento a um sistema de coleta e queima dos gases da carbonização. Após exaustiva pesquisa bibliográfica e visitas técnicas para conhecimento de diferentes tecnologias de carbonização, elaborou-se o projeto, com objetivo de eliminar as limitações identificadas nas tecnologias tradicionais em uso atualmente pelas empresas com produção em escala industrial, reduzindo as perdas e dificuldades operacionais para aproveitamento dos gases. É caracterizado pela saída dos gases somente por uma chaminé instalada no fundo do forno, possui entradas de ar do processo em minicâmaras, que atuam evitando excesso de ar, queima excessiva de madeira e consequente geração excessiva de CO2 e metano – dois gases causadores de efeito estufa. Preconiza-se a queima dos gases da carbonização para uso posterior em geração de energia elétrica e/ou secagem da madeira antes da carbonização. Os resultados dos indicadores técnicos (ciclos dos fornos e produtividade, etc.) e de produção obtidos até o momento na planta em operação vêm confirmando a operacionalidade do conjunto de fornos na nova disposição concebida. Não houve perda de produtividade dos fornos causada pela nova disposição, e as modificações no projeto do forno não impactaram negativamente em seu desempenho operacional. A capacidade produtiva da Unidade vem se confirmando até o momento. Tivemos frustradas nossas expectativas de já apresentar nesta dissertação os resultados operacionais dos fornos juntamente com os do sistema de queima dos gases dado que houve considerável atraso na construção do mesmo impedindo-nos de tê-los antes da data limite de entrega da dissertação. Apresentamos os conceitos que nos levaram à tomada de decisão para o novo lay out e propomos a continuidade dos estudos comprobatórios da viabilidade econômica operacional do sistema, tão logo ele entre em operação.
Resumo:
Oral and facial bone defects can undertake appearance, psychosocial well-being and stomathognatic function of its patients. Over the yerars several strategies for bone defect regeneration have arised to treat these pathologies, among them the use of frozen and irradiated bone allograft. Manipulation of bone grafts it s not determined yet, and several osteotomy alternatives can be observed. The present work evaluated with a microscope the bone fragments obtained from different osteotomy methods and irrigation on rings and blocks allografts irradiated and frozen at 80° negative in a rabbit model. The study is experimental in vitro and it sample was an adult male New Zealand rabbit. The animal was sacrificed to obtain long bones, that were submitted to freezing at 80º negative and irradiated with Cobalt- 60. Then the long bones were sectioned into 24 bone pieces, divided into 4 groups: G1 (n=06) osteotomy was performed with bur No. 6 forming rings with 5 mm thickness with high-speed handpiece with manual irrigation; G2 (n=06) osteotomy was performed with bur No. 6 forming rings with 5 mm thick with surgical motor with a manual irrigation rotation 1500 rpm; GA (n=06), osteotomy with trephine using manual irrigation with saline; and GB (n=06), osteotomy with trephine using saline from peristaltic pumps of surgical motor. Five bone pieces of each group were prepared for analysis on light microscopy (LM) and one on electronic scan electronic microscopy (SEM). On the SEM analysis edges surface, presence of microcracks and Smear Layer were evaluated. Analyzing osteotomy technics on SEM was observed: increased presence of microcracks cutting with high speed; increased presence of areas covered by Smear Layer when cutting with motor implant. The irrigation analysis with SEM was observed: that the presence of microcracks does not depend on the type of irrigation; on manual irrigation, there was greater discrepancy between the cutting lines. The descriptive analysis of the osteotomy and irrigation process on LM showed: histological analysis showing the bony margins with clear tissue changed layer, composed of blackened tissue of charred appearance near to the cortical bone; on the edges of the bony part, bone fragments that were displaced during the bone cut and bone irregularities were observed. After analysis of results we can conclude: that there was greater regularity of the bone cut using high-speed handpiece than using motor implant; the cut with trephine using saline irrigated from peristaltic pumps of surgical motor showed greater homogeneity when compared with manual irrigation; charred tissue was found in all obtained bone samples, whit no significant statistically difference on the proportion of carbonization of the two analysed technics
Resumo:
Polycyclic aromatic hydrocarbons (PAH) were measured in smoke samples from wood carbonization during charcoal production, in both particulate matter (PM) and gaseous phases. Samples were acquired using a medium-volume air sampler at 1.5 m distance from the furnace. Particle-bound PAH were collected on Fluoropore polytetrafluoroethylene filters and gas-phase PAH were collected into sorbent tubes with XAD-2 resin. PAH were extracted with dichloromethane-methanol and analyzed using gas chromatography-mass spectrometry. The results showed total emission from the furnace of 26 mu g/m(3) for the 16 PAH and 2.8 mu g/m(3) for the 10 genotoxic PAH (from fluoranthene to benzo[g,h,i]perylene). High emission of 16 PAH in the first 8 h of wood carbonization was detected (64 mu g/m(3); 56% of the total emission). Associated with PM, 11% of the total emission of 16 PAH (in both phases) and 60% of 10 genotoxic PAH were found. Relative ratios (for example, [Phe]/[Phe] + [Ant]) for the PAH of the same molecular weight were obtained and compared with the published data. The concentrations of benzo[a]pyrene equivalent (BaPeq) were estimated using the list of toxic equivalent factors suggested by Nisbet and LaGoy, 1992. The values of 0.30 and 0.06 mg/m3 were obtained for the total concentrations of BaPeq in PM and gaseous phase, respectively. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Glassy polymeric carbon (GPC) is a useful material for medical applications due to its chemical inertness and biocompatible characteristics. Mitral and aortic and hydrocephalic valves are examples of GPC prosthetic devices that have been fabricated and commercialized in Brazil. In this work, ion beam was used to improve the mechanical characteristics of GPC surface and therefore to avoid the propagation of microcracks where the cardiac valves are more fragile. A control group of phenolic resin samples heat-treated at 300, 400, 700, 1000, 1500, and 2500 degrees C was characterized by measuring their hardness and Young's reduced elastic modulus with the depth of indentation. The control group was compared to results obtained with samples heat-treated at 700, 1000, and 1500 degrees C and bombarded with energetic ions of silicon, carbon, oxygen, and gold at energies of 5, 6, 8, and 10 MeV, respectively, with fluences between 10x10(13) and 10x10(16) ions/cm(2). GPC nonbombarded samples showed that hardness depends on the heat treatment temperature (HTT), with a maximum hardness for heat treatment at 1000 degrees C. The comparison between the control group and bombarded group also showed that hardness, after bombardment, had a greater increase for samples prepared at 700 degrees C than for samples prepared at higher temperatures. The Young's elastic modulus presents an exponential relationship with depth. The parameters obtained by fitting depend on the HTT and on the ion used in the bombardment more than on energy and fluence. The hardness results show clearly that bombardment can promote carbonization, increase the linkage between the chains of the polymeric material, and promote recombination of broken bonds in lateral groups that are more numerous for samples heat-treated at 700 degrees C. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
This work presents a surface study of monolithic vitreous (or glassy) carbon - MVC - obtained from vitreous carbon powder. Defective MVC pieces are crushed in a ball mill and size classified by sifting. The MVC powder is mixed with furfuryl-alcohol resin and compacted in a mould using a hydraulic press. Samples with different powder granulometries are produced in this way and carbonized in a furnace under nitrogen atmosphere. Complete carbonization of the powder is achieved in only one day and losses due to breakage of the pieces is less than 5%. These results compare very favorably with respect to traditional MVC production methods where full carbonization may require up to seven days and losses due to breakage can be as high as 70%. After carbonization, samples are sanded and polished. Surface roughness and microstructure are characterized by light microscopy. Porosity is quantified from micrographs using ImageJ software and nanometric height variations are measured by atomic force microscopy. © 2012 Materials Research Society.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)