974 resultados para Capillary Eletrophoresis
Resumo:
Glycidyl methacrylate (GMA) and ethylene dimethacrylate (EDMA) were used to synthesize a monolithic capillary column containing reactive epoxy groups. Glutaraldehyde was introduced and linked to the monolith after a process of amination. An aqueous solution of commercial carrier ampholytes (CAs, Ampholine) was focused in such a polymer column. The primary amino groups of CAs reacted with glutaraldehyde along the capillary. CAs were immobilized at different positions in the column according to their isoelectric points (pl), resulting in a monolithic immobilized pH gradient (M-IPG). Isoelectric focusing (IEF) was performed without CAs in such an M-IPG column. Due to the covalent attachment of the CAs this M-IPG can be repeatedly used after its preparation. Good stability, linearity, and reproducibility were obtained.
Resumo:
Methacrylate-based monolithic columns with electroosmotic flow (EOF) or very weak EOF are prepared by in situ copolymerization in the presence of a porogen in fused-silica capillaries pretreated with a bifunctional reagent. Satisfactory separations of acidic and basic compounds on the column with EOF at either low or high pH are achieved, respectively. With sulfonic groups as dissociation functionalities, sufficient EOF mobility still remains as high as 1.74 x 10(-4) cm(2) s(-1) V-1 at low pH. Under this condition, seven acidic compounds are readily separated within 5.7 min. Moreover, at high pH, the peak shape of basic compounds is satisfactory without addition of any masking amines into running mobile phase since the secondary interaction between the basic compounds and the monolithic stationary phase are minimized at high pH. Reversed-phase mechanism for both acidic and basic compounds is observed under investigated separation conditions. In addition, possibilities of acidic and basic compound separations on a monolithic column with extremely low EOF are discussed. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A method involving self-concentration, on-column enrichment and field-amplified sample stacking for on-line concentration in capillary electrochromatography with a polymer monolithic column is presented. Since monolithic columns eliminate the frit fabrication and the problems associated with frits, the experimental conditions could be more flexibly adjusted to obtain higher concentration factor in comparison with conventional particulate packed columns. With self-concentration effect, the detection sensitivity of benzene and hexylbenzene is improved by a factor of 4 and 8, respectively. With on-column enrichment and ultralong injection, improvement as high as 22 000 times in detection sensitivity of benzoin is achieved. Furthermore, a combination of the three above-mentioned methods yields up to a 24000-fold improvement in detection sensitivity for caffeine, a charged compound. Parameters affecting the efficiency of on-line concentration are investigated systematically. In addition, equations describing on-line concentration process are deduced.
Resumo:
An on-line sample introduction technique in capillary gas chromatograph (CGC) for the analysis of high-pressure gas-liquid mixtures has been designed and evaluated. A sample loop of 0.05 muL and a washing solvent loop of 0.5 muL are mounted on a 10-port switching valve, which serves as the injection valve. A capillary resistor was connected to the vent of sample loop in order to maintain the pressure of the sample. Both the sample and the washing solvent are transferred into the split-injection port through a narrow bore fused silica capillary inserted into the injection liner through a septum. The volume of the liner is used both as the pressure-release damper and evaporation chamber of the sample. On-line analysis of both reactants and resultants in ethylene olimer reaction mixture at 5 MPa was carried out, which demonstrated the applicability of the technique. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A packed-bed electroosmotic pump (EOP) was constructed and evaluated. The EOP consisted of three capillary columns packed in parallel, a gas-releasing device, Pt electrodes and a high-voltage power supply. The EOP could generate output pressure above 5.0 MPa and constant flow rate in the range of nl/min to a few mul/min for pure water, pure methanol, 2 mM potassium dihydrogenphosphate buffer, the buffer-methanol mixture and the pure water-methanol mixture at applied potentials less than 20 W The composition of solvent before/after pumping was quantitatively determined by using a gas chromatograph equipped with both flame ionization detector and thermal conductivity detector. It was found that there were no apparent changes in composition and relative concentrations after pumping process for a methanol-ethanol-acetonitrile mixture and a methanol-water mixture. Theoretical aspect of the EOP was discussed in detail. An capillary HPLC system consisting of the EOP, an injection valve, a 15 cm x 320 mum i.d., 5 mum Spherigel C(18) stainless steel analytical column, and an on-column UV detector was connected to evaluate the performance of the EOP. A comparative study was also carried out with a mechanical capillary HPLC pump on the same system. The results demonstrated that the reproducibility of flow rate and the pulsation-free flow property of the EOP are superior to that of mechanical pump in capillary HPLC application. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Long methacrylate monolithic columns (100 cm x 320 mum i.d.) were prepared from silanized fused-silica capillaries of 320 mum i.d. by in situ copolymerization of butyl methacrylate (BMA) with ethylene dimethacrylate (EDMA) in the presence of a suitable porogen. The separation performance and selectivity of the column were evaluated and compared with a 25 cm x 320 mum i.d. column prepared in the same way by capillary high-performance liquid chromatography (mu-HPLC) The results showed that the 1 m long monolithic column can generate 33 x 10(3) plate number and exhibited good permeability, higher sample loadability, and separation capability. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A capillary electrochromatography (CEC) monolithic column with zwitterionic stationary phases was prepared by in situ polymerization of butyl methacrylate, ethylene dimethacrylate, methacrylic acid, and 2-(dimethyl amino) ethyl methacrylate in the presence of porogens. The stationary phases have zwitterionic functional groups, that is, both tertiary amine and acrylic acid groups, so the ionization of those groups on the zwitterionic stationary phase was affected by the pH values of the mobile phase, and further affects the strength and direction of the electroosmotic flow (EOF). Separations of alkylbenzenes and polycylic aromatic hydrocarbons based on the hydrophobic mechanism were obtained. Separation of various types of polar compounds, including phenols, anilines, and peptides, on the prepared column were performed under CEC mode with anodic and cathodic EOF, and different separation selectivities of those polar analytes were observed on the monolithic capillary column by using mobile phases with different pH values.
Resumo:
This review article summarizes the variety of polar stationary phases that have been employed for capillary electrochromatographic separations. Compared with reversed-phase stationary phases, the polar alternatives provide a completely different retention selectivity towards polar and charged analytes. Different types of polar stationary phases are reviewed, including the possible retention mechanisms. Electrochromato-graphic separations of polar solutes, peptides, and basic pharmaceuticals on polar stationary phases are presented.