834 resultados para Cameras.
Resumo:
The evolution of the television market is led by 3DTV technology, and this tendency can accelerate during the next years according to expert forecasts. However, 3DTV delivery by broadcast networks is not currently developed enough, and acts as a bottleneck for the complete deployment of the technology. Thus, increasing interest is dedicated to ste-reo 3DTV formats compatible with current HDTV video equipment and infrastructure, as they may greatly encourage 3D acceptance. In this paper, different subsampling schemes for HDTV compatible transmission of both progressive and interlaced stereo 3DTV are studied and compared. The frequency characteristics and preserved frequency content of each scheme are analyzed, and a simple interpolation filter is specially designed. Finally, the advantages and disadvantages of the different schemes and filters are evaluated through quality testing on several progressive and interlaced video sequences.
Resumo:
Here, a novel and efficient strategy for moving object detection by non-parametric modeling on smart cameras is presented. Whereas the background is modeled using only color information, the foreground model combines color and spatial information. The application of a particle filter allows the update of the spatial information and provides a priori information about the areas to analyze in the following images, enabling an important reduction in the computational requirements and improving the segmentation results
Resumo:
In this paper, we present a depth-color scene modeling strategy for indoors 3D contents generation. It combines depth and visual information provided by a low-cost active depth camera to improve the accuracy of the acquired depth maps considering the different dynamic nature of the scene elements. Accurate depth and color models of the scene background are iteratively built, and used to detect moving elements in the scene. The acquired depth data is continuously processed with an innovative joint-bilateral filter that efficiently combines depth and visual information thanks to the analysis of an edge-uncertainty map and the detected foreground regions. The main advantages of the proposed approach are: removing depth maps spatial noise and temporal random fluctuations; refining depth data at object boundaries, generating iteratively a robust depth and color background model and an accurate moving object silhouette.
Resumo:
Many image processing methods, such as techniques for people re-identification, assume photometric constancy between different images. This study addresses the correction of photometric variations based upon changes in background areas to correct foreground areas. The authors assume a multiple light source model where all light sources can have different colours and will change over time. In training mode, the authors learn per-location relations between foreground and background colour intensities. In correction mode, the authors apply a double linear correction model based on learned relations. This double linear correction includes a dynamic local illumination correction mapping as well as an inter-camera mapping. The authors evaluate their illumination correction by computing the similarity between two images based on the earth mover's distance. The authors compare the results to a representative auto-exposure algorithm found in the recent literature plus a colour correction one based on the inverse-intensity chromaticity. Especially in complex scenarios the authors’ method outperforms these state-of-the-art algorithms.
Resumo:
En esta tesis se presenta un análisis en profundidad de cómo se deben utilizar dos tipos de métodos directos, Lucas-Kanade e Inverse Compositional, en imágenes RGB-D y se analiza la capacidad y precisión de los mismos en una serie de experimentos sintéticos. Estos simulan imágenes RGB, imágenes de profundidad (D) e imágenes RGB-D para comprobar cómo se comportan en cada una de las combinaciones. Además, se analizan estos métodos sin ninguna técnica adicional que modifique el algoritmo original ni que lo apoye en su tarea de optimización tal y como sucede en la mayoría de los artículos encontrados en la literatura. Esto se hace con el fin de poder entender cuándo y por qué los métodos convergen o divergen para que así en el futuro cualquier interesado pueda aplicar los conocimientos adquiridos en esta tesis de forma práctica. Esta tesis debería ayudar al futuro interesado a decidir qué algoritmo conviene más en una determinada situación y debería también ayudarle a entender qué problemas le pueden dar estos algoritmos para poder poner el remedio más apropiado. Las técnicas adicionales que sirven de remedio para estos problemas quedan fuera de los contenidos que abarca esta tesis, sin embargo, sí se hace una revisión sobre ellas.---ABSTRACT---This thesis presents an in-depth analysis about how direct methods such as Lucas- Kanade and Inverse Compositional can be applied in RGB-D images. The capability and accuracy of these methods is also analyzed employing a series of synthetic experiments. These simulate the efects produced by RGB images, depth images and RGB-D images so that diferent combinations can be evaluated. Moreover, these methods are analyzed without using any additional technique that modifies the original algorithm or that aids the algorithm in its search for a global optima unlike most of the articles found in the literature. Our goal is to understand when and why do these methods converge or diverge so that in the future, the knowledge extracted from the results presented here can efectively help a potential implementer. After reading this thesis, the implementer should be able to decide which algorithm fits best for a particular task and should also know which are the problems that have to be addressed in each algorithm so that an appropriate correction is implemented using additional techniques. These additional techniques are outside the scope of this thesis, however, they are reviewed from the literature.
Observations of Comet 9P/Tempel 1 around the Deep Impact event by the OSIRIS cameras onboard Rosetta
Resumo:
The OSIRIS cameras on the Rosetta spacecraft observed Comet 9P/Tempel 1 from 5 days before to 10 days after it was hit by the Deep Impact projectile. The Narrow Angle Camera (NAC) monitored the cometary dust in 5 different filters. The Wide Angle Camera (WAC) observed through filters sensitive to emissions from OH, CN, Na, and OI together with the associated continuum. Before and after the impact the comet showed regular variations in intensity. The period of the brightness changes is consistent with the rotation period of Tempel 1. The overall brightness of Tempel 1 decreased by about 10% during the OSIRIS observations. The analysis of the impact ejecta shows that no new permanent coma structures were created by the impact. Most of the material moved with View the MathML source∼200ms−1. Much of it left the comet in the form of icy grains which sublimated and fragmented within the first hour after the impact. The light curve of the comet after the impact and the amount of material leaving the comet (View the MathML source4.5–9×106kg of water ice and a presumably larger amount of dust) suggest that the impact ejecta were quickly accelerated by collisions with gas molecules. Therefore, the motion of the bulk of the ejecta cannot be described by ballistic trajectories, and the validity of determinations of the density and tensile strength of the nucleus of Tempel 1 with models using ballistic ejection of particles is uncertain.
Resumo:
Presentación oral SPIE Photonics Europe, Brussels, 16-19 April 2012.
Resumo:
Many applications including object reconstruction, robot guidance, and. scene mapping require the registration of multiple views from a scene to generate a complete geometric and appearance model of it. In real situations, transformations between views are unknown and it is necessary to apply expert inference to estimate them. In the last few years, the emergence of low-cost depth-sensing cameras has strengthened the research on this topic, motivating a plethora of new applications. Although they have enough resolution and accuracy for many applications, some situations may not be solved with general state-of-the-art registration methods due to the signal-to-noise ratio (SNR) and the resolution of the data provided. The problem of working with low SNR data, in general terms, may appear in any 3D system, then it is necessary to propose novel solutions in this aspect. In this paper, we propose a method, μ-MAR, able to both coarse and fine register sets of 3D points provided by low-cost depth-sensing cameras, despite it is not restricted to these sensors, into a common coordinate system. The method is able to overcome the noisy data problem by means of using a model-based solution of multiplane registration. Specifically, it iteratively registers 3D markers composed by multiple planes extracted from points of multiple views of the scene. As the markers and the object of interest are static in the scenario, the transformations obtained for the markers are applied to the object in order to reconstruct it. Experiments have been performed using synthetic and real data. The synthetic data allows a qualitative and quantitative evaluation by means of visual inspection and Hausdorff distance respectively. The real data experiments show the performance of the proposal using data acquired by a Primesense Carmine RGB-D sensor. The method has been compared to several state-of-the-art methods. The results show the good performance of the μ-MAR to register objects with high accuracy in presence of noisy data outperforming the existing methods.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
"HRDS-02/04-05(500)E"--P. [4] of cover.