2 resultados para Cameras.
em CaltechTHESIS
Resumo:
Part I.
In recent years, backscattering spectrometry has become an important tool for the analysis of thin films. An inherent limitation, though, is the loss of depth resolution due to energy straggling of the beam. To investigate this, energy straggling of 4He has been measured in thin films of Ni, Al, Au and Pt. Straggling is roughly proportional to square root of thickness, appears to have a slight energy dependence and generally decreases with decreasing atomic number of the adsorber. The results are compared with predictions of theory and with previous measurements. While Ni measurements are in fair agreement with Bohr's theory, Al measurements are 30% above and Au measurements are 40% below predicted values. The Au and Pt measurements give straggling values which are close to one another.
Part II.
MeV backscattering spectrometry and X-ray diffraction are used to investigate the behavior of sputter-deposited Ti-W mixed films on Si substrates. During vacuum anneals at temperatures near 700°C for several hours, the metallization layer reacts with the substrate. Backscattering analysis shows that the resulting compound layer is uniform in composition and contains Ti, Wand Si. The Ti:W ratio in the compound corresponds to that of the deposited metal film. X-ray analyses with Reed and Guinier cameras reveal the presence of the ternary TixW(1-x)Si2 compound. Its composition is unaffected by oxygen contamination during annealing, but the reaction rate is affected. The rate measured on samples with about 15% oxygen contamination after annealing is linear, of the order of 0.5 Å per second at 725°C, and depends on the crystallographic orientation of the substrate and the dc bias during sputter-deposition of the Ti-W film.
Au layers of about 1000 Å thickness were deposited onto unreacted Ti-W films on Si. When annealed at 400°C these samples underwent a color change,and SEM micrographs of the samples showed that an intricate pattern of fissures which were typically 3µm wide had evolved. Analysis by electron microprobe revealed that Au had segregated preferentially into the fissures. This result suggests that Ti-W is not a barrier to Au-Si intermixing at 400°C.
Resumo:
Visual inputs to artificial and biological visual systems are often quantized: cameras accumulate photons from the visual world, and the brain receives action potentials from visual sensory neurons. Collecting more information quanta leads to a longer acquisition time and better performance. In many visual tasks, collecting a small number of quanta is sufficient to solve the task well. The ability to determine the right number of quanta is pivotal in situations where visual information is costly to obtain, such as photon-starved or time-critical environments. In these situations, conventional vision systems that always collect a fixed and large amount of information are infeasible. I develop a framework that judiciously determines the number of information quanta to observe based on the cost of observation and the requirement for accuracy. The framework implements the optimal speed versus accuracy tradeoff when two assumptions are met, namely that the task is fully specified probabilistically and constant over time. I also extend the framework to address scenarios that violate the assumptions. I deploy the framework to three recognition tasks: visual search (where both assumptions are satisfied), scotopic visual recognition (where the model is not specified), and visual discrimination with unknown stimulus onset (where the model is dynamic over time). Scotopic classification experiments suggest that the framework leads to dramatic improvement in photon-efficiency compared to conventional computer vision algorithms. Human psychophysics experiments confirmed that the framework provides a parsimonious and versatile explanation for human behavior under time pressure in both static and dynamic environments.