953 resultados para Camera


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calibration of the CCD camera of the 1-m telescope at the Vainu Bappu Observatory, Kavalur, to the BVR system is reported here based on the observations of stars in the 'dipper asterism' in the open cluster M 67 (NGC 2682). Transformations involving B and V have negligible colour terms, while those involving R are slightly colour dependent. The possibility of using scale-down R band fluxes to estimate the continuum flux at H-alpha is investigated by comparing the counts in R band with those through an interference filter centred at H-alpha. The scaling factor is found to remain constant over a wide range of colours. The sensitivity of the telescope-filter-CCD combination is estimated to be 2.0 per cent, 8.3 per cent and 9.7 per cent in B, V and R bands, respectively. The star F117 appears to be a small-amplitude (approximately 0.05 mag) variable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The loss and degradation of forest cover is currently a globally recognised problem. The fragmentation of forests is further affecting the biodiversity and well-being of the ecosystems also in Kenya. This study focuses on two indigenous tropical montane forests in the Taita Hills in southeastern Kenya. The study is a part of the TAITA-project within the Department of Geography in the University of Helsinki. The study forests, Ngangao and Chawia, are studied by remote sensing and GIS methods. The main data includes black and white aerial photography from 1955 and true colour digital camera data from 2004. This data is used to produce aerial mosaics from the study areas. The land cover of these study areas is studied by visual interpretation, pixel-based supervised classification and object-oriented supervised classification. The change of the forest cover is studied with GIS methods using the visual interpretations from 1955 and 2004. Furthermore, the present state of the study forests is assessed with leaf area index and canopy closure parameters retrieved from hemispherical photographs as well as with additional, previously collected forest health monitoring data. The canopy parameters are also compared with textural parameters from digital aerial mosaics. This study concludes that the classification of forest areas by using true colour data is not an easy task although the digital aerial mosaics are proved to be very accurate. The best classifications are still achieved with visual interpretation methods as the accuracies of the pixel-based and object-oriented supervised classification methods are not satisfying. According to the change detection of the land cover in the study areas, the area of indigenous woodland in both forests has decreased in 1955 2004. However in Ngangao, the overall woodland area has grown mainly because of plantations of exotic species. In general, the land cover of both study areas is more fragmented in 2004 than in 1955. Although the forest area has decreased, forests seem to have a more optimistic future than before. This is due to the increasing appreciation of the forest areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have benchmarked the maximum obtainable recognition accuracy on five publicly available standard word image data sets using semi-automated segmentation and a commercial OCR. These images have been cropped from camera captured scene images, born digital images (BDI) and street view images. Using the Matlab based tool developed by us, we have annotated at the pixel level more than 3600 word images from the five data sets. The word images binarized by the tool, as well as by our own midline analysis and propagation of segmentation (MAPS) algorithm are recognized using the trial version of Nuance Omnipage OCR and these two results are compared with the best reported in the literature. The benchmark word recognition rates obtained on ICDAR 2003, Sign evaluation, Street view, Born-digital and ICDAR 2011 data sets are 83.9%, 89.3%, 79.6%, 88.5% and 86.7%, respectively. The results obtained from MAPS binarized word images without the use of any lexicon are 64.5% and 71.7% for ICDAR 2003 and 2011 respectively, and these values are higher than the best reported values in the literature of 61.1% and 41.2%, respectively. MAPS results of 82.8% for BDI 2011 dataset matches the performance of the state of the art method based on power law transform.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents two methods of star camera calibration to determine camera calibrating parameters (like principal point, focal length etc) along with lens distortions (radial and decentering). First method works autonomously utilizing star coordinates in three consecutive image frames thus independent of star identification or biased attitude information. The parameters obtained in autonomous self-calibration technique helps to identify the imaged stars with the cataloged stars. Least Square based second method utilizes inertial star coordinates to determine satellite attitude and star camera parameters with lens radial distortion, both independent of each other. Camera parameters determined by the second method are more accurate than the first method of camera self calibration. Moreover, unlike most of the attitude determination algorithms where attitude of the satellite depend on the camera calibrating parameters, the second method has the advantage of computing spacecraft attitude independent of camera calibrating parameters except lens distortions (radial). Finally Kalman filter based sequential estimation scheme is employed to filter out the noise of the LS based estimation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, sensing coverage by wireless camera-embedded sensor networks (WCSNs), a class of directional sensors is studied. The proposed work facilitates the autonomous tuning of orientation parameters and displacement of camera-sensor nodes in the bounded field of interest (FoI), where the network coverage in terms of every point in the FoI is important. The proposed work is first of its kind to study the problem of maximizing coverage of randomly deployed mobile WCSNs which exploits their mobility. We propose an algorithm uncovered region exploration algorithm (UREA-CS) that can be executed in centralized and distributed modes. Further, the work is extended for two special scenarios: 1) to suit autonomous combing operations after initial random WCSN deployments and 2) to improve the network coverage with occlusions in the FoI. The extensive simulation results show that the performance of UREA-CS is consistent, robust, and versatile to achieve maximum coverage, both in centralized and distributed modes. The centralized and distributed modes are further analyzed with respect to the computational and communicational overheads.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a depth-guided photometric 3D reconstruction method that works solely with a depth camera like the Kinect. Existing methods that fuse depth with normal estimates use an external RGB camera to obtain photometric information and treat the depth camera as a black box that provides a low quality depth estimate. Our contribution to such methods are two fold. Firstly, instead of using an extra RGB camera, we use the infra-red (IR) camera of the depth camera system itself to directly obtain high resolution photometric information. We believe that ours is the first method to use an IR depth camera system in this manner. Secondly, photometric methods applied to complex objects result in numerous holes in the reconstructed surface due to shadows and self-occlusions. To mitigate this problem, we develop a simple and effective multiview reconstruction approach that fuses depth and normal information from multiple viewpoints to build a complete, consistent and accurate 3D surface representation. We demonstrate the efficacy of our method to generate high quality 3D surface reconstructions for some complex 3D figurines.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Santamaría, José Miguel; Pajares, Eterio; Olsen, Vickie; Merino, Raquel; Eguíluz, Federico (eds.)