846 resultados para Cable-Driven Parallel Manipulator


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface tension induced convection in a liquid bridge held between two parallel, coaxial, solid disks is considered. The surface tension gradient is produced by a small temperature gradient parallel Co the undisturbed surface. The study is performed by using a mathematical regular perturbation approach based on a small parameter, e, which measures the deviation of the imposed temperature field from its mean value. The first order velocity field is given by a Stokes-type problem (viscous terms are dominant) with relatively simple boundary conditions. The first order temperature field is that imposed from the end disks on a liquid bridge immersed in a non-conductive fluid. Radiative effects are supposed to be negligible. The second order temperature field, which accounts for convective effects, is split into three components, one due to the bulk motion, and the other two to the distortion of the free surface. The relative importance of these components in terms of the heat transfer to or from the end disks is assessed

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a computational methodology -"B-LOG"-, which offers the potential for an effective implementation of Logic Programming in a parallel computer. We also propose a weighting scheme to guide the search process through the graph and we apply the concepts of parallel "branch and bound" algorithms in order to perform a "best-first" search using an information theoretic bound. The concept of "session" is used to speed up the search process in a succession of similar queries. Within a session, we strongly modify the bounds in a local database, while bounds kept in a global database are weakly modified to provide a better initial condition for other sessions. We also propose an implementation scheme based on a database machine using "semantic paging", and the "B-LOG processor" based on a scoreboard driven controller.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the growing body of research on traumatic brain injury and spinal cord injury, computational neuroscience has recently focused its modeling efforts on neuronal functional deficits following mechanical loading. However, in most of these efforts, cell damage is generally only characterized by purely mechanistic criteria, function of quantities such as stress, strain or their corresponding rates. The modeling of functional deficits in neurites as a consequence of macroscopic mechanical insults has been rarely explored. In particular, a quantitative mechanically based model of electrophysiological impairment in neuronal cells has only very recently been proposed (Jerusalem et al., 2013). In this paper, we present the implementation details of Neurite: the finite difference parallel program used in this reference. Following the application of a macroscopic strain at a given strain rate produced by a mechanical insult, Neurite is able to simulate the resulting neuronal electrical signal propagation, and thus the corresponding functional deficits. The simulation of the coupled mechanical and electrophysiological behaviors requires computational expensive calculations that increase in complexity as the network of the simulated cells grows. The solvers implemented in Neurite-explicit and implicit-were therefore parallelized using graphics processing units in order to reduce the burden of the simulation costs of large scale scenarios. Cable Theory and Hodgkin-Huxley models were implemented to account for the electrophysiological passive and active regions of a neurite, respectively, whereas a coupled mechanical model accounting for the neurite mechanical behavior within its surrounding medium was adopted as a link between lectrophysiology and mechanics (Jerusalem et al., 2013). This paper provides the details of the parallel implementation of Neurite, along with three different application examples: a long myelinated axon, a segmented dendritic tree, and a damaged axon. The capabilities of the program to deal with large scale scenarios, segmented neuronal structures, and functional deficits under mechanical loading are specifically highlighted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the critical role that terrestrial vegetation plays in the Earth's carbon cycle, very little is known about the potential evolutionary responses of plants to anthropogenically induced increases in concentrations of atmospheric CO2. We present experimental evidence that rising CO2 concentration may have a direct impact on the genetic composition and diversity of plant populations but is unlikely to result in selection favoring genotypes that exhibit increased productivity in a CO2-enriched atmosphere. Experimental populations of an annual plant (Abutilon theophrasti, velvetleaf) and a temperate forest tree (Betula alleghaniensis, yellow birch) displayed responses to increased CO2 that were both strongly density-dependent and genotype-specific. In competitive stands, a higher concentration of CO2 resulted in pronounced shifts in genetic composition, even though overall CO2-induced productivity enhancements were small. For the annual species, quantitative estimates of response to selection under competition were 3 times higher at the elevated CO2 level. However, genotypes that displayed the highest growth responses to CO2 when grown in the absence of competition did not have the highest fitness in competitive stands. We suggest that increased CO2 intensified interplant competition and that selection favored genotypes with a greater ability to compete for resources other than CO2. Thus, while increased CO2 may enhance rates of selection in populations of competing plants, it is unlikely to result in the evolution of increased CO2 responsiveness or to operate as an important feedback in the global carbon cycle. However, the increased intensity of selection and drift driven by rising CO2 levels may have an impact on the genetic diversity in plant populations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A scanning tunneling microscope can probe the inelastic spin excitations of a single magnetic atom in a surface via spin-flip assisted tunneling in which transport electrons exchange spin and energy with the atomic spin. If the inelastic transport time, defined as the average time elapsed between two inelastic spin flip events, is shorter than the atom spin-relaxation time, the scanning tunnel microscope (STM) current can drive the spin out of equilibrium. Here we model this process using rate equations and a model Hamiltonian that describes successfully spin-flip-assisted tunneling experiments, including a single Mn atom, a Mn dimer, and Fe Phthalocyanine molecules. When the STM current is not spin polarized, the nonequilibrium spin dynamics of the magnetic atom results in nonmonotonic dI/dV curves. In the case of spin-polarized STM current, the spin orientation of the magnetic atom can be controlled parallel or antiparallel to the magnetic moment of the tip. Thus, spin-polarized STM tips can be used both to probe and to control the magnetic moment of a single atom.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The high capital cost of robots prohibit their economic application. One method of making their application more economic is to increase their operating speed. This can be done in a number of ways e.g. redesign of robot geometry, improving actuators and improving control system design. In this thesis the control system design is considered. It is identified in the literature review that two aspects in relation to robot control system design have not been addressed in any great detail by previous researchers. These are: how significant are the coupling terms in the dynamic equations of the robot and what is the effect of the coupling terms on the performance of a number of typical independent axis control schemes?. The work in this thesis addresses these two questions in detail. A program was designed to automatically calculate the path and trajectory and to calculate the significance of the coupling terms in an example application of a robot manipulator tracking a part on a moving conveyor. The inertial and velocity coupling terms have been shown to be of significance when the manipulator was considered to be directly driven. A simulation of the robot manipulator following the planned trajectory has been established in order to assess the performance of the independent axis control strategies. The inertial coupling was shown to reinforce the control torque at the corner points of the trajectory, where there was an abrupt demand in acceleration in each axis but of opposite sign. This reduced the tracking error however, this effect was not controllable. A second effect was due to the velocity coupling terms. At high trajectory speeds it was shown, by means of a root locus analysis, that the velocity coupling terms caused the system to become unstable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the self-assembly of a new family of hydrophobic,bis(pyridyl) PtII complexes featuring an extendedoligophenyleneethynylene-derived π-surface appended withsix long (dodecyloxy (2)) or short (methoxy (3)) side groups.Complex 2, containing dodecyloxy chains, forms fibrous assemblies with a slipped arrangement of the monomer units (dPt···Pt… =14 Å) in both nonpolar solvents and the solid state.Dispersion-corrected PM6 calculations suggest that this organizationis driven by cooperative π–π, C-H···Cl and π–Pt interactions, which is supported by EXAFS and 2D NMR spectroscopic analysis. In contrast, nearly parallel π-stacks (dPt···Pt… = 4.4 Å) stabilized by multiple π–π and C-H···Cl contact sare obtained in the crystalline state for 3 lacking longside chains, as shown by X-ray analysis and PM6 calculations.Our results reveal not only the key role of alkyl chain lengthin controlling self-assembly modes but also show the relevanceof Pt-bound chlorine ligands as new supramolecular synthons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In many areas of simulation, a crucial component for efficient numerical computations is the use of solution-driven adaptive features: locally adapted meshing or re-meshing; dynamically changing computational tasks. The full advantages of high performance computing (HPC) technology will thus only be able to be exploited when efficient parallel adaptive solvers can be realised. The resulting requirement for HPC software is for dynamic load balancing, which for many mesh-based applications means dynamic mesh re-partitioning. The DRAMA project has been initiated to address this issue, with a particular focus being the requirements of industrial Finite Element codes, but codes using Finite Volume formulations will also be able to make use of the project results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern software application testing, such as the testing of software driven by graphical user interfaces (GUIs) or leveraging event-driven architectures in general, requires paying careful attention to context. Model-based testing (MBT) approaches first acquire a model of an application, then use the model to construct test cases covering relevant contexts. A major shortcoming of state-of-the-art automated model-based testing is that many test cases proposed by the model are not actually executable. These \textit{infeasible} test cases threaten the integrity of the entire model-based suite, and any coverage of contexts the suite aims to provide. In this research, I develop and evaluate a novel approach for classifying the feasibility of test cases. I identify a set of pertinent features for the classifier, and develop novel methods for extracting these features from the outputs of MBT tools. I use a supervised logistic regression approach to obtain a model of test case feasibility from a randomly selected training suite of test cases. I evaluate this approach with a set of experiments. The outcomes of this investigation are as follows: I confirm that infeasibility is prevalent in MBT, even for test suites designed to cover a relatively small number of unique contexts. I confirm that the frequency of infeasibility varies widely across applications. I develop and train a binary classifier for feasibility with average overall error, false positive, and false negative rates under 5\%. I find that unique event IDs are key features of the feasibility classifier, while model-specific event types are not. I construct three types of features from the event IDs associated with test cases, and evaluate the relative effectiveness of each within the classifier. To support this study, I also develop a number of tools and infrastructure components for scalable execution of automated jobs, which use state-of-the-art container and continuous integration technologies to enable parallel test execution and the persistence of all experimental artifacts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of this study is to provide a framework for future researchers to understand and use the FARSITE wildfire-forecasting model with data assimilation. Current wildfire models lack the ability to provide accurate prediction of fire front position faster than real-time. When FARSITE is coupled with a recursive ensemble filter, the data assimilation forecast method improves. The scope includes an explanation of the standalone FARSITE application, technical details on FARSITE integration with a parallel program coupler called OpenPALM, and a model demonstration of the FARSITE-Ensemble Kalman Filter software using the FireFlux I experiment by Craig Clements. The results show that the fire front forecast is improved with the proposed data-driven methodology than with the standalone FARSITE model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neuroinflammation constitutes a major player in the etiopathology of neurodegenerative diseases (NDDs), by orchestrating several neurotoxic pathways which in concert lead to neurodegeneration. A positive feedback loop occurs between inflammation, microglia activation and misfolding processes that, alongside excitotoxicity and oxidative events, represent crucial features of this intricate scenario. The multi-layered nature of NDDs requires a deepen investigation on how these vicious cycles work. This could further help in the search for effective treatments. Electrophiles are critically involved in the modulation of a variety of neuroprotective responses. Thus, we envisioned their peculiar ability to switch on/off biological activities as a powerful tool for investigating the neurotoxic scenario driven by inflammation in NDDs. In particular, in this thesis project, we wanted to dissect at a molecular level the functional role of (pro)electrophilic moieties of previously synthesized thioesters of variously substituted trans-cinnamic acids, to identify crucial features which could interfere with amyloid aggregation as well as modulate Nrf2 and/or NF-κB activation. To this aim, we first synthesized new compounds to identify bioactive cores which could specifically modulate the intended target. Then, we systematically modified their structure to reach additional pathogenic pathways which could in tandem contribute to the inflammatory process. In particular, following the investigation of the mechanistic underpinnings involving the catechol feature in amyloid binding through the synthesis of new dihydroxyl derivatives, we incorporated the identified antiaggregating nucleus into constrained frames which could contrast neuroinflammation also through the modulation of CB2Rs. In parallel, Nrf2 and/or NF-κB antinflammatory structural requirements were combined with the neuroprotective cores of pioglitazone, an antidiabetic drug endowed with MAO-B inhibitory properties, and memantine, which notably contrasts excitotoxicity. By acting as Swiss army knives, the new set of molecules emerge as promising tools to deepen our insights into the complex scenario regulating NDDs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the observation of multiple harmonic generation in electric dipole spin resonance in an InAs nanowire double quantum dot. The harmonics display a remarkable detuning dependence: near the interdot charge transition as many as eight harmonics are observed, while at large detunings we only observe the fundamental spin resonance condition. The detuning dependence indicates that the observed harmonics may be due to Landau-Zener transition dynamics at anticrossings in the energy level spectrum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth of organs and whole plants depends on both cell growth and cell-cycle progression, but the interaction between both processes is poorly understood. In plants, the balance between growth and cell-cycle progression requires coordinated regulation of four different processes: macromolecular synthesis (cytoplasmic growth), turgor-driven cell-wall extension, mitotic cycle, and endocycle. Potential feedbacks between these processes include a cell-size checkpoint operating before DNA synthesis and a link between DNA contents and maximum cell size. In addition, key intercellular signals and growth regulatory genes appear to target at the same time cell-cycle and cell-growth functions. For example, auxin, gibberellin, and brassinosteroid all have parallel links to cell-cycle progression (through S-phase Cyclin D-CDK and the anaphase-promoting complex) and cell-wall functions (through cell-wall extensibility or microtubule dynamics). Another intercellular signal mediated by microtubule dynamics is the mechanical stress caused by growth of interconnected cells. Superimposed on developmental controls, sugar signalling through the TOR pathway has recently emerged as a central control point linking cytoplasmic growth, cell-cycle and cell-wall functions. Recent progress in quantitative imaging and computational modelling will facilitate analysis of the multiple interconnections between plant cell growth and cell cycle and ultimately will be required for the predictive manipulation of plant growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the study was to illustrate the applicability and significance of the novel Lewis urothelial cancer model compared to the classic Fisher 344. Fischer 344 and Lewis females rats, 7 weeks old, were intravesical instilled N-methyl-N-nitrosourea 1.5 mg/kg every other week for a total of four doses. After 15 weeks, animals were sacrificed and bladders analyzed: histopathology (tumor grade and stage), immunohistochemistry (apoptotic and proliferative indices) and blotting (Toll-like receptor 2-TLR2, Uroplakin III-UP III and C-Myc). Control groups received placebo. There were macroscopic neoplastic lesions in 20 % of Lewis strain and 70 % of Fischer 344 strain. Lewis showed hyperplasia in 50 % of animals, normal bladders in 50 %. All Fischer 344 had lesions, 20 % papillary hyperplasia, 30 % dysplasia, 40 % neoplasia and 10 % squamous metaplasia. Proliferative and apoptotic indices were significantly lower in the Lewis strain (p < 0.01). The TLR2 and UP III protein levels were significantly higher in Lewis compared to Fischer 344 strain (70.8 and 46.5 % vs. 49.5 and 16.9 %, respectively). In contrast, C-Myc protein levels were significantly higher in Fischer 344 (22.5 %) compared to Lewis strain (13.7 %). The innovative Lewis carcinogen resistance urothelial model represents a new strategy for translational research. Preservation of TLR2 and UP III defense mechanisms might drive diverse urothelial phenotypes during carcinogenesis in differently susceptible individuals.