973 resultados para CL-SR system
Resumo:
The spatial pattern of epilithic algae in the Xiangxi River system was studied in relation to several environmental factors by two-way indictor species analysis (TWINSPAN), detrended correspondence analysis (DCA), and canonical correspondence analysis (CCA). Eighty-nine taxa including diatoms, green algae, and blue-green algae were observed. Diatoms were dominant, and Cocconeis placentula, Cymbella minuta, Diatoma vulgare, and Gomphonema angustatum appeared in most of sampling sites. By TWINSPAN and DCA, thirty-one sites were divided into three groups based on composition and relative richness of benthic algae. CCA indicated that SiO2, pH, total phosphorus, Ca2+, velocity, elevation, and Cl- were significant environmental factors affecting the distribution of algae communities. In this minimal subset, SiO2 and pH were the most influential variables.
Resumo:
This paper introduced a long-term ambulatory intragastric pH monitoring system, which is designed for prolonged ambulatory studies of Gastroesophageal Reflux Diseases. The whole system is composed of the gastric catheter with two pH sensors, a small data logger (Microdatalog), and a notebook PC. In this paper, the design of monitoring system hardware and software are described in detail. Clinical applications reveal good results.
Resumo:
Balance functions have been measured for charged-particle pairs, identified charged-pion pairs, and identified charged-kaon pairs in Au + Au, d + Au, and p + p collisions at root s(NN) = 200 GeV at the Relativistic Heavy Ion Collider using the STAR detector. These balance functions are presented in terms of relative pseudorapidity, Delta eta, relative rapidity, Delta y, relative azimuthal angle, Delta phi, and invariant relative momentum, q(inv). For charged-particle pairs, the width of the balance function in terms of Delta eta scales smoothly with the number of participating nucleons, while HIJING and UrQMD model calculations show no dependence on centrality or system size. For charged-particle and charged-pion pairs, the balance functions widths in terms of Delta eta and Delta y are narrower in central Au + Au collisions than in peripheral collisions. The width for central collisions is consistent with thermal blast-wave models where the balancing charges are highly correlated in coordinate space at breakup. This strong correlation might be explained by either delayed hadronization or limited diffusion during the reaction. Furthermore, the narrowing trend is consistent with the lower kinetic temperatures inherent to more central collisions. In contrast, the width of the balance function for charged-kaon pairs in terms of Delta y shows little centrality dependence, which may signal a different production mechanism for kaons. The widths of the balance functions for charged pions and kaons in terms of q(inv) narrow in central collisions compared to peripheral collisions, which may be driven by the change in the kinetic temperature.
Resumo:
Parity (P)-odd domains, corresponding to nontrivial topological solutions of the QCD vacuum, might be created during relativistic heavy-ion collisions. These domains are predicted to lead to charge separation of quarks along the orbital momentum of the system created in noncentral collisions. To study this effect, we investigate a three-particle mixed-harmonics azimuthal correlator which is a P-even observable, but directly sensitive to the charge-separation effect. We report measurements of this observable using the STAR detector in Au + Au and Cu + Cu collisions at root s(NN) = 200 and 62 GeV. The results are presented as a function of collision centrality, particle separation in rapidity, and particle transverse momentum. A signal consistent with several of the theoretical expectations is detected in all four data sets. We compare our results to the predictions of existing event generators and discuss in detail possible contributions from other effects that are not related to P violation.
Resumo:
We report new results on identified (anti) proton and charged pion spectra at large transverse momenta (3 < p(T) < 10 GeV/c) from Cu + Cu collisions at root s(NN) = 200 GeV using the STAR detector at the Relativistic Heavy Ion Collider (RHIC). This study explores the system size dependence of two novel features observed at RHIC with heavy ions: the hadron suppression at high-p(T) and the anomalous baryon to meson enhancement at intermediate transverse momenta. Both phenomena could be attributed to the creation of a new form of QCD matter. The results presented here bridge the system size gap between the available pp and Au + Au data, and allow for a detailed exploration of the onset of the novel features. Comparative analysis of all available 200 GeV data indicates that the system size is a major factor determining both the magnitude of the hadron spectra suppression at large transverse momenta and the relative baryon to meson enhancement.
Resumo:
We present the results of an elliptic flow, v(2), analysis of Cu + Cu collisions recorded with the solenoidal tracker detector (STAR) at the BNL Relativistic Heavy Ion Collider at root s(NN) = 62.4 and 200 GeV. Elliptic flow as a function of transverse momentum, v(2)(p(T)), is reported for different collision centralities for charged hadrons h(+/-) and strangeness-ontaining hadrons K-S(0), Lambda, Xi, and phi in the midrapidity region vertical bar eta vertical bar < 1.0. Significant reduction in systematic uncertainty of the measurement due to nonflow effects has been achieved by correlating particles at midrapidity, vertical bar eta vertical bar < 1.0, with those at forward rapidity, 2.5 < vertical bar eta vertical bar < 4.0. We also present azimuthal correlations in p + p collisions at root s = 200 GeV to help in estimating nonflow effects. To study the system-size dependence of elliptic flow, we present a detailed comparison with previously published results from Au + Au collisions at root s(NN) = 200 GeV. We observe that v(2)(p(T)) of strange hadrons has similar scaling properties as were first observed in Au + Au collisions, that is, (i) at low transverse momenta, p(T) < 2 GeV/c, v(2) scales with transverse kinetic energy, m(T) - m, and (ii) at intermediate p(T), 2 < p(T) < 4 GeV/c, it scales with the number of constituent quarks, n(q.) We have found that ideal hydrodynamic calculations fail to reproduce the centrality dependence of v(2)(p(T)) for K-S(0) and Lambda. Eccentricity scaled v(2) values, v(2)/epsilon, are larger in more central collisions, suggesting stronger collective flow develops in more central collisions. The comparison with Au + Au collisions, which go further in density, shows that v(2)/epsilon depends on the system size, that is, the number of participants N-part. This indicates that the ideal hydrodynamic limit is not reached in Cu + Cu collisions, presumably because the assumption of thermalization is not attained.
Resumo:
A multi-channel gated integrator and PXI based data acquisition system have been developed for nuclear detector arrays with hundreds of detector units. The multi-channel gated integrator can be controlled by a programmable Cl controller. The PXI-DAQ system consists of NI PXI-1033 chassis with several PXI-DAQ cards. The system software has a user-friendly GUI which is written in C language using LabWindows/CVI under Windows XP operating system. The performance of the PXI-DAQ system is very reliable and capable of handling event rate up to 40 kHz. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The structures, properties and electron transfer reactivity of the ClO/ClO- coupling system are studied in this paper at ab initio (UHF and UMP2) levels and the Density Functional Theory (DFT: UB3LYP, UB3P86, UB3PW91) levels employing 6311 + G(3df) basis set and on the basis of the Golden-rule of the time-dependent perturbation theory. Investigations indicate that the results obtained using the UB3LYP method employing 6-311 + G(3df) basis set is in excellent agreement with the experiment. For this coupling system, six stable coupling modes have been found which correspond to six different encounter complexes and denote six different electron transfer mechanism: four O-O directly linked structures (one collinear: D-h, one anti-parallel: C-s, two twist: C-2) and two Cl-O linked structures (cis- and anti- C-s structures). The activation energies, the stabilization energies and the electronic coupling matrix elements have also been calculated for the electron transfer reactions via these six different mechanism at the UB3LYP/6-311 + G(3df) level, and then the electron transfer rates are determined at the same level. The most favorable coupling mode to the electron transfer is the anti-parallel mechanism. The averaged electron transfer rate is about 5.58 X 10(11) M-1 s(-1). It is also implied that the B3LYP method can give more reasonable results for the electron transfer reactivity of this system. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Theoretical researches were performed on the CaFe2O4-type binary rare earth oxides AR(2)O(4) (A = Ca, Sr, Ba; R = rare earths) by using chemical bond theory of dielectric description. The chemical bond properties of these crystals were explored, and then the thermal expansion property and compressibility were studied. The theoretical values of linear thermal expansion coefficient (LTEC) and bulk modulus were presented. The calculations revealed that the LTECs and the bulk moduli do have linear relationship with the ionic radii of the rare earths. In the cases of Sc and Y, both the LTEC and bulk modulus values are larger than the lanthanide series. We attribute this to the difference in the electronic configuration between Sc (Y) and lanthanide series. For SrY2O4 and BaY2O4 crystals, the theoretical values of LTEC and bulk modulus agree well with experimental ones.
Resumo:
Layered organic-inorganic composite materials (C5H10N3)PbX4 (X = Br 1, Cl 2) containing histaminium dications were grown via a solution-cooling process, and their structure and optical properties were determined. The organic ligand-histaminium introduced into the corner-sharing octahedra of the 'PbX4- layer' contains both primary ammonium and imidazolium different from the traditionally primary amine found in this system. As comparison, another analogous amine of 3-amino-1,2,4-triazol was used as ligand to coordinate with PbBr2 in acid solution. A novel complex (C2H2N4)PbBr3 (3) was obtained with zigzag PbBr2 chains different from the PbX4 layer in compound as 1 and 2. The hybrid (C5H10N3)PbX4 show exciton absorption at 339 nm for X = Cl and 419 nm for X = Br with the corresponding emission at 360 and 436 nm, respectively. The different PbBr2 chain structure of compound 3 does not show photo luminescence.
Resumo:
M2B5O9X: Re(M = Ca, Sr, Ba; X = Cl, Br; Re = Eu, Th) phosphors were synthesized via solid state method. The products were characterized with X-ray powder diffraction and luminescence spectrometer. The luminescent properties as well. as the influences of the matrix composition and other doping ions on the luminescence of the rare earth ions of the co-doped phosphors were investigated. The coexistence of Eu3+, Eu2+ and Th3+ were observed in these matrices. The phenomenon may be explained by the electron transfer theory. The sensitization of Ce3+ ion improves the intensity of emission of Eu2+, and Tb3+. The competition between electron transfer among conjugate rare earth ions and energy migration might be the reasons for the observation. We predict a novel trichromatic phosphor co-doped with Eu3+ Tb3+ in M2B5O9X.
Resumo:
Two novel organic-inorganic hybrid complexes [(CuX)(2)(o-phen)](infinity) (X = Br (1), Cl (2); o-phen = o-phenanthroline) have been synthesized hydrothermally and characterized structurally by elemental analyses, IR, ESR, XPS spectrum, TG analyses and single-crystal X-ray diffraction. Both title compounds exhibit novel one-dimensional chainlike copper halide scaffolding constructed by the unusual [Cu3X3] hexagon motifs by sharing opposite edges, where a single Cu site of each [Cu3X3] hexagon is chelated with N donors of o-phen group. To our knowledge, such basic o-phen-copper halide skeleton has not been reported hitherto. Moreover, TG analyses indicate that both title compounds possess high thermal stability.
Resumo:
A new chemiluminescence(CL) system for the determination of ascorbic acid has been established. By the fast reduction reaction between chromium(VI) and ascorbic acid, chromium(M was generated to react with luminol and hydrogen peroxide in alkaline aqueous solution and hydrogen peroxide to produce CL. The CL emission intensity was correlated with ascorbic acid concentration in the range 8.0 x 10(-9) to 1.6 x 10(-4) mol/L, and the detection limit was 8.0 x 10(-9) mol/L ascorbic acid. The relative standard deviation (n = 11) for 1.0 x 10(-6) mol/L ascorbic acid is 0.9%. The method has been applied to the determination of ascorbic acid in vitamin C tablets with satisfactory results.