990 resultados para CITRUS VARIEGATED CHLOROSIS (CVC)
Resumo:
Xylella fastidiosa is a fastidious, xylem-limited bacterium that causes a range of economically important plant diseases. Here we report the complete genome sequence of X. fastidiosa clone 9a5c, which causes citrus variegated chlorosis - a serious disease of orange trees. The genome comprises a 52.7% GC-rich 2,679,305-base-pair (bp) circular chromosome and 'two plasmids of 51,158 bp and 1,285 bp. We can assign putative functions to47% of the 2,904 predicted coding regions. Efficient metabolic functions are predicted, with sugars as the principal energy and carbon source, supporting existence in the nutrient-poor xylem sap. The mechanisms associated with pathogenicity and virulence involve toxins, antibiotics and ion sequestration systems, as well as bacterium-bacterium and bacterium-host interactions mediated by a range of proteins. Orthologues of some of these proteins have only been identified in animal and human pathogens; their presence in X. fastidiosa indicates that the molecular basis for bacterial pathogenicity is both conserved and independent of host. At least 83 genes are bacteriophage-derived and include virulence-associated genes from other bacteria, providing direct evidence of phage-mediated horizontal gene transfer.
Resumo:
Abstract Background Xylella fastidiosa, a Gram-negative fastidious bacterium, grows in the xylem of several plants causing diseases such as citrus variegated chlorosis. As the xylem sap contains low concentrations of amino acids and other compounds, X. fastidiosa needs to cope with nitrogen limitation in its natural habitat. Results In this work, we performed a whole-genome microarray analysis of the X. fastidiosa nitrogen starvation response. A time course experiment (2, 8 and 12 hours) of cultures grown in defined medium under nitrogen starvation revealed many differentially expressed genes, such as those related to transport, nitrogen assimilation, amino acid biosynthesis, transcriptional regulation, and many genes encoding hypothetical proteins. In addition, a decrease in the expression levels of many genes involved in carbon metabolism and energy generation pathways was also observed. Comparison of gene expression profiles between the wild type strain and the rpoN null mutant allowed the identification of genes directly or indirectly induced by nitrogen starvation in a σ54-dependent manner. A more complete picture of the σ54 regulon was achieved by combining the transcriptome data with an in silico search for potential σ54-dependent promoters, using a position weight matrix approach. One of these σ54-predicted binding sites, located upstream of the glnA gene (encoding glutamine synthetase), was validated by primer extension assays, confirming that this gene has a σ54-dependent promoter. Conclusions Together, these results show that nitrogen starvation causes intense changes in the X. fastidiosa transcriptome and some of these differentially expressed genes belong to the σ54 regulon.
Resumo:
Xylella fastidiosa inhabits the plant xylem, a nutrient-poor environment, so that mechanisms to sense and respond to adverse environmental conditions are extremely important for bacterial survival in the plant host. Although the complete genome sequences of different Xylella strains have been determined, little is known about stress responses and gene regulation in these organisms. In this work, a DNA microarray was constructed containing 2,600 ORFs identified in the genome sequencing project of Xylella fastidiosa 9a5c strain, and used to check global gene expression differences in the bacteria when it is infecting a symptomatic and a tolerant citrus tree. Different patterns of expression were found in each variety, suggesting that bacteria are responding differentially according to each plant xylem environment. The global gene expression profile was determined and several genes related to bacterial survival in stressed conditions were found to be differentially expressed between varieties, suggesting the involvement of different strategies for adaptation to the environment. The expression pattern of some genes related to the heat shock response, toxin and detoxification processes, adaptation to atypical conditions, repair systems as well as some regulatory genes are discussed in this paper. DNA microarray proved to be a powerful technique for global transcriptome analyses. This is one of the first studies of Xylella fastidiosa gene expression in vivo which helped to increase insight into stress responses and possible bacterial survival mechanisms in the nutrient-poor environment of xylem vessels.
Resumo:
Citrus canker is a serious disease caused by Xanthomonas citri subsp. citri bacteria, which infects citrus plants (Citrus spp.) leading to large economic losses in citrus production worldwide. In this work, laser induced fluorescence spectroscopy (LIF) was investigated as a diagnostic technique for citrus canker disease in citrus trees at an orchard using a portable optical fiber based spectrometer. For comparison we have applied LIF to leaves contaminated with citrus canker, citrus scab, citrus variegates chlorosis, and Huanglongbing (HLB, Greening). In order to reduce the noise in the data, we collected spectra from ten leaves with visual symptoms of diseases and from five healthy leaves per plant. This procedure is carried out in order to minimize the environmental effect on the spectrum (water and nutrient supply) of each plant. Our results show that this method presents a high sensitivity (similar to 90%), however it does present a low specificity (similar to 70%) for citrus canker diagnostic. We believe that such poor performance is due to the fact that the optical fiber collects light from only a small part of the leaf. Such results may be improved using the fluorescence imaging technique on the whole leaf. (C) 2010 Optical Society of America
Resumo:
The phytopathogen Xylella fastidiosa produces long type IV pili and short type I pili involved in motility and adhesion. In this work, we have investigated the role of sigma factor sigma(54) (RpoN) in the regulation of fimbrial biogenesis in X. fastidiosa. An rpoN null mutant was constructed from the non-pathogenic citrus strain J1a12, and microarray analyses of global gene expression comparing the wild type and rpoN mutant strains showed few genes exhibiting differential expression. In particular, gene pilA1 (XF2542), which encodes the structural pilin protein of type IV pili, showed decreased expression in the rpoN mutant, whereas two-fold higher expression of an operon encoding proteins of type I pili was detected, as confirmed by quantitative RT-PCR (qRT-PCR) analysis. The transcriptional start site of pilA1 was determined by primer extension, downstream of a sigma(54)-dependent promoter. Microarray and qRT-PCR data demonstrated that expression of only one of the five pilA paralogues, pilA1, was significantly reduced in the rpoN mutant. The rpoN mutant made more biofilm than the wild type strain and presented a cell-cell aggregative phenotype. These results indicate that sigma(54) differentially regulates genes involved in type IV and type I fimbrial biogenesis, and is involved in biofilm formation in X. fastidiosa.
Resumo:
In February 2007, sweet orange trees with characteristic symptoms of huanglongbing (HLB) were encountered in a region of Sao Paulo state (SPs) hitherto free of HLB. These trees tested negative for the three liberibacter species associated with HLB. A polymerase chain reaction (PCR) product from symptomatic fruit columella DNA amplifications with universal primers fDI/rPI was cloned and sequenced. The corresponding agent was found to have highest 16S rDNA sequence identity (99%) with the Pigeon pea witches`-broom phytoplasma of group 16Sr IX. Sequences of PCR products obtained with phytoplasma 16S rDNA primer pairs fU5/rU3, fU5/P7 confirm these result.,;. With two primers D7f2/D7r2 designed based oil the 16S rDNA Sequence of the cloned DNA fragment, positive amplifications were obtained from more than one hundred samples including symptomatic fruits and blotchy mottle leaves. Samples positive for phytoplasmas were negative for liberibacters, except for four samples, which were positive for both the phytoplasma and `Candidatus Liberibacter asiaticus`. The phytoplasma was detected by electron microscopy in the sieve tubes of midribs from symptomatic leaves. These results Show that a phytoplasma of group IX is associated with citrus HLB symptoms ill northern, central, and Southern SPs. This phytoplasma has very probably been transmitted to citrus from an external Source of inoculum, but the Putative insect vector is not yet known.
Resumo:
A tangerina-'Poncã' é bastante apreciada pelo consumidor brasileiro. No Estado de São Paulo, a maturação de seus frutos ocorre nos meses de abril a agosto. Com o mercado ávido por frutas de mesa e agravado pelo problema da ocorrência da clorose variegada dos citros (CVC), que afeta principalmente as variedades de laranjas-doces, tem havido um aumento considerável no plantio dessa variedade. Dessa forma, um excesso de produção, num mesmo período, faz com que os preços caiam, desestimulando assim os produtores. O Centro de Citricultura Sylvio Moreira (CCSM) vem buscando outras alternativas no sentido de obter, durante o ano todo, esse tipo de tangerina. Assim sendo, foram realizados estudos de caracterização de frutos, em diversas épocas do ano, com o acompanhamento dos níveis de maturação, envolvendo acessos do Banco de Germoplasma do CCSM. Dentre as variedades estudadas, quanto à precocidade e qualidade dos frutos, destacou-se a Span Americana. A tangerina-'Poncã' tem seu período de maturação para as condições edafoclimáticas do CCSM, nos meses de maio e junho. Já a variedade Span Americana, que apresenta frutos similares à 'Poncã' tradicional, tem maturação bastante precoce, podendo ser iniciada a sua colheita no mês de março.
Resumo:
Estudou-se o efeito da infecção pela bactéria Xylella fastidiosa, agente causal da Clorose Variegada dos Citros (CVC), sobre a taxa de ingestão de seiva do xilema de plantas cítricas por duas espécies de cigarrinhas vetoras (Hemiptera: Cicadellidae). Foram utilizados pés-francos de laranjeira-doce (Citrus sinensis) das variedades 'Pêra' e 'Valência', infectadas por X. fastidiosa da linhagem 9a5c, por meio de inoculação mecânica. Os insetos utilizados nos experimentos foram coletados em campo, sendo um representante da Tribo Cicadellini (Dilobopterus costalimai) e um da Proconiini (Oncometopia facialis). A taxa de ingestão de seiva do xilema por O. facialis foi quantificada nos ramos das plantas e a de D. costalimai nas folhas e ramos, por meio da avaliação do volume do líquido (honeydew) excretado por unidade de tempo. O consumo pela cigarrinha O. facialis nas plantas doentes foi menor do que nas plantas sadias. Na variedade 'Pêra' doente, o consumo foi baixo, não permitindo a quantificação da seiva eliminada. Na 'Pêra' sadia e na 'Valência' doente e sadia, O. facialis apresentou valores expressivos de excreção, com maior alimentação no período diurno. Nas plantas sadias das duas variedades, o consumo pela cigarrinha D. costalimai foi maior do que nas plantas com CVC. Comparando-se as variedades, o consumo foi superior na variedade 'Valência', e, em relação às partes da planta, folha e ramo, a taxa de ingestão foi maior no ramo das duas variedades, apresentando consumo maior no período diurno.
Resumo:
Xylella fastidiosa 9a5c (XF-9a5c) and Xanthomonas axonopodis pv. citri (XAC) are bacteria that infect citrus plants. Sequencing of the genomes of these strains is complete and comparative analyses are now under way with the genomes of other bacteria of the same genera. In this review, we present an overview of this comparative genomic work. We also present a detailed genomic comparison between XF-9a5a and XAC. Based on this analysis, genes and operons were identified that might be relevant for adaptation to citrus. XAC has two copies of a type II secretion system, a large number of cell wall-degrading enzymes and sugar transporters, a complete energy metabolism, a whole set of avirulence genes associated with a type III secretion system, and a complete flagellar and chemotatic system. By contrast, XF-9a5c possesses more genes involved with type IV pili biosynthesis than does XAC, contains genes encoding for production of colicins, and has 4 copies of Type I restriction/modification system while XAC has only one.
Resumo:
Brazilian citriculture represents about 25% of the total world citrus production with an area of 851,518 ha and a total production of more than 17 million tons in 1996. Besides its importance to the brazilian economy, represented by more than 1 billion US $ by year from FCOJ exportation, the citriculture has problems related to low productivity, due to several cultural practices and management. The productivity would be improved by an IFP system. The main problems are related to soil, as poor conservation, use of poor drained soils and bad preparation for planting; diseases-canker, CVC, leprosis, Phytophtora gummosis and other fungus diseases; pests - mites, scales, nematodes and others; the use of disease free and improved scion and rootstocks propagative material is usual; cultural practices - as nutrition, irrigation, wind breaks, weed control, pruning, replant and others, as density planting could be improved. Some possible solutions will be discussed for improving the brazilian citrus productivity and quality by IFP, based on research made.
Resumo:
The actinobacterium Streptomyces wadayamensis A23 is an endophyte of Citrus reticulata that produces the antimycin and mannopeptimycin antibiotics, among others. The strain has the capability to inhibit Xylella fastidiosa growth. The draft genome of S. wadayamensis A23 has ~7.0 Mb and 6,006 protein-coding sequences, with a 73.5% G+C content.
Resumo:
The endophyte Guignardia mangiferae is closely related to G. citricarpa, the causal agent of citrus black spot; for many years these species had been confused with each other. The development of molecular analytical methods has allowed differentiation of the pathogen G. citricarpa from the endophyte G. mangiferae, but the physiological traits associated with pathogenicity were not described. We examined genetic and enzymatic characteristics of Guignardia spp strains; G. citricarpa produces significantly greater amounts of amylases, endoglucanases and pectinases, compared to G. mangiferae, suggesting that these enzymes could be key in the development of citrus black spot. Principal component analysis revealed pectinase production as the main enzymatic characteristic that distinguishes these Guignardia species. We quantified the activities of pectin lyase, pectin methylesterase and endopolygalacturonase; G. citricarpa and G. mangiferae were found to have significantly different pectin lyase and endopolygalacturonase activities. The pathogen G. citricarpa is more effective in pectin degradation. We concluded that there are significant physiological differences between the species G. citricarpa and G. mangiferae that could be associated with differences in pathogenicity for citrus plants.
Resumo:
The citrus greening (or huanglongbing) disease has caused serious problems in citrus crops around the world. An early diagnostic method to detect this malady is needed due to the rapid dissemination of Candidatus Liberibacter asiaticus (CLas) in the field. This analytical study investigated the fluorescence responses of leaves from healthy citrus plants and those inoculated with CLas by images from a stereomicroscope and also evaluated their potential for the early diagnosis of the infection caused by this bacterium. The plants were measured monthly, and the evolution of the bacteria on inoculated plants was monitored by real-time quantitative polymerase chain reaction (RT-qPCR) amplification of CLas sequences. A statistical method was used to analyse the data. The selection of variables from histograms of colours (colourgrams) of the images was optimized using a paired Student's t-test. The intensity of counts for green colours from images of fluorescence had clearly minor variations for healthy plants than diseased ones. The darker green colours were the indicators of healthy plants and the light colours for the diseased. The method of fluorescence images is novel for fingerprinting healthy and diseased plants and provides an alternative to the current method represented by PCR and visual inspection. A new, non-subjective pattern of analysis and a non-destructive method has been introduced that can minimize the time and costs of analyses.
Resumo:
The oligopeptide-binding protein, OppA, binds and ushers oligopeptide substrates to the membrane-associated oligopeptide permease (Opp), a multi-component ABC-type transporter involved in the uptake of oligopeptides expressed by several bacterial species. In the present study, we report the cloning, purification, refolding and conformational analysis of a recombinant OppA protein derived from Xanthomonas axonopodis pv. citri (X. citri), the etiological agent of citrus canker. The oppA gene was expressed in Escherichia coli BL21 (DE3) strain under optimized inducing conditions and the recombinant protein remained largely insoluble. Solubilization was achieved following refolding of the denatured protein. Circular dichroism analysis indicated that the recombinant OppA protein preserved conformational features of orthologs expressed by other bacterial species. The refolded recombinant OppA represents a useful tool for structural and functional analyses of the X. citri protein.
Resumo:
We have investigated the detection of mechanical and disease stresses in citrus plants (Citrus limonia [L.] Osbeck) using laser-induced fluorescence spectroscopy. Due to its economic importance we have chosen to investigate the citrus canker disease, which is caused by the Xanthomonas axonopodis pv. citri bacteria. Mechanical stress was also studied because it plays an important role in the plant's infection by such bacteria. A laser-induced fluorescence spectroscopy system, composed of a spectrometer and a 532 nm 10 mW excitation laser was used to perform fluorescence spectroscopy. The ratio of two chlorophyll fluorescence bands allows us to detect and discriminate between mechanical and disease stresses. This ability to discriminate may have an important application in the field to detect citrus canker infected trees. (c) 2008 Optical Society of America.