917 resultados para CD4 T lymphocyte
Resumo:
Fish oil supplementation has been shown to improve the cachectic state of tumor-bearing animals and humans. Our previous study showed that fish oil supplementation (1 g per kg body weight per day) for 2 generations had anticancer and anticachetic effects in Walker 256 tumor-bearing rats as demonstrated by reduced tumor growth and body weight loss and increased food intake and survival. In this study, the effect of fish oil supplementation for 2 generations on membrane integrity, proliferation capacity, and CD4/CD8 ratio of lymphocytes isolated from mesenteric lymph nodes, spleen, and thymus of Walker 256 tumor-bearing animals was investigated. We also determined fish oil effect on plasma concentration and ex vivo production of cytokines [tumor necrosis factor-alpha (TNF-alpha), interferon-gamma (IFN-gamma), interleukin-4 (IL-4), IL-6, and IL-10]. Lymphocytes from thymus of tumor-bearing rats presented lower viability, but this change was abolished by fish oil supplementation. Tumor growth increased proliferation of lymphocytes from all lymphoid organs, and fish oil supplementation abolished this effect. Ex vivo production of TNF-alpha and IL-6 was reduced in supplemented animals, but IL-4 and IL-10 secretion was stimulated in both nontumor and tumor-bearing rats. IL-10 and IFN-gamma plasma levels was also decreased in supplemented animals. These results suggest that the anticachetic effects of fish oil supplementation for a long period of time (2 generations) in Walker 256 tumor-bearing rats may be associated to a decrease in lymphocyte function as demonstrated by reduced viability, proliferation capacity, and cytokine production.
Resumo:
Lymphotoxin alpha (LTA) is a member of the TNF cytokine superfamily, produced principally by lymphocytes. It plays an important role in immune and inflammatory responses. Many TNF superfamily members have functionally important isoforms generated by alternative splicing but alternative splicing of LTA has never been studied. The known LTA protein is encoded by a transcript containing four exons. Here we report seven new LTA splice variants, three of them evolutionary conserved. We demonstrate their presence in cytoplasmic RNA suggesting that they could be translated into new LTA isoforms. We observed that their expression is differentially regulated upon activation of peripheral blood mononuclear cells and lymphocyte subpopulations (CD4+, CD8+, and CD19+). Our data suggest that the new LTA splice variants might play a role in the regulation of the immune response. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Dendritic cells (DCs) are the most important antigen-presenting cells of the immune system and have a crucial role in T-lymphocyte activation and adaptive immunity initiation. However, DCs have also been implicated in maintaining immunological tolerance. In this study, we evaluated changes in the CD4(+) CD25(+) Foxp3(+) T-cell population after co-culture of lymph node cells from BALB/c mice with syngeneic bone marrow-derived DCs. Our results showed an increase in CD4(+) CD25(+) Foxp3(+) T cells after co-culture which occurred regardless of the activation state of DCs and the presence of allogeneic apoptotic cells; however, it was greater when DCs were immature and were pulsed with the alloantigen. Interestingly, syngeneic apoptotic thymocytes were not as efficient as allogeneic apoptotic cells in expanding the CD4(+) CD25(+) Foxp3(+) T-cell population. In all experimental settings, DCs produced high amounts of transforming growth factor (TGF)-beta. The presence of allogeneic apoptotic cells induced interleukin (IL)-2 production in immature and mature DC cultures. This cytokine was also detected in the supernatants under all experimental conditions and enhanced when immature DCs were pulsed with the alloantigen. CD4(+) CD25(+) Foxp3(+) T-cell expansion during co-culture of lymph node cells with DCs strongly suggested that the presence of alloantigen enhanced the number of regulatory T cells (Tregs) in vitro. Our data also suggest a role for both TGF-beta and IL-2 in the augmentation of the CD4(+) CD25(+) Foxp3(+) population.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Infected dogs are urban reservoirs of Leishmania chagasi, which is a causative agent of visceral leishmaniasis (VL). Dogs exhibit immune suppression during the course of this disease, and lymphocyte apoptosis is involved in this process. To investigate apoptosis and the expression levels of FAS-FAS-associated death domain protein (CD95 or APO-1), FASL-FAS ligand protein (CD178), and TRAIL-TNF-related apoptosis-inducing ligand (CD253) receptors in peripheral blood mononuclear cells and spleen leukocytes from 38 symptomatic dogs with moderate VL and 25 healthy dogs were evaluated by flow cytometry. The apoptosis rate of blood and splenic CD4+ and CD8+ cells was higher in infected dogs than in healthy dogs. The expression levels of FAS and FASL in blood and splenic CD4+ cells were lower in infected dogs than in healthy dogs. FAS expression in CD8+ cells was higher in infected dogs than in healthy dogs; in contrast, FASL expression was lower in infected dogs. The expression of the TRAIL receptor increased only in splenic CD8+ cells from infected dogs. The FAS and FAS-L blocking antibodies confirmed the importance of these receptors in apoptosis. Our results enhance the current understanding of the immune response in dogs infected with L. chagasi, facilitating the future development of therapeutic interventions to reduce lymphocyte depletion. © 2013 Elsevier B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Biociências e Biotecnologia Aplicadas à Farmácia - FCFAR
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Biociências e Biotecnologia Aplicadas à Farmácia - FCFAR
Resumo:
The expression of immune response as a leukocytic infiltrate by CD4+ and CD8+ cells in the epithelium and in the intestinal lamina propria of chicks fed Lactobacillus spp or cecal microflora (CM) and experimentally challenged or not with Salmonella enterica serovar Enteritidis (SE) was studied using immunohistochemistry. Three hundred and twenty day-of-hatch broiler chicks were divided into four groups of 80 birds each and orally received L. reuteri, L. salivarius, L. acidophilus, or CM. Each group was subdivided into four subgroups of 20 birds each, classified as follows: a subgroup did not receive any oral treatment (negative control), subgroup treated with L. spp or CM, subgroup treated with L. spp or CM and challenged with SE, and subgroup only challenged with SE (positive control). The results show that the oral treatment with L. reuteri, L. salivarius, L. acidophilus, or CM and challenge or not with SE stimulated bird immune response as determined by the leukocytic infiltrate by CD8+ lymphocytes followed by CD4+ in the epithelium and in the lamina propria of the duodenum, jejunum, and cecum of chicks up to 12 days of age. CD8+ lymphocyte number was significantly higher in the intestine of chicks receiving CM and challenged with SE. The duodenum, followed by the jejunum, were the segments in which the immune response, as shown by T, CD4+ and CD8+ cells, was stimulated with the greatest intensity.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
T-cell based vaccine approaches have emerged to counteract HIV-1/AIDS. Broad, polyfunctional and cytotoxic CD4(+) T-cell responses have been associated with control of HIV-1 replication, which supports the inclusion of CD4(+) T-cell epitopes in vaccines. A successful HIV-1 vaccine should also be designed to overcome viral genetic diversity and be able to confer immunity in a high proportion of immunized individuals from a diverse HLA-bearing population. In this study, we rationally designed a multiepitopic DNA vaccine in order to elicit broad and cross-clade CD4(+) T-cell responses against highly conserved and promiscuous peptides from the HIV-1 M-group consensus sequence. We identified 27 conserved, multiple HLA-DR-binding peptides in the HIV-1 M-group consensus sequences of Gag, Pol, Nef, Vif, Vpr, Rev and Vpu using the TEPITOPE algorithm. The peptides bound in vitro to an average of 12 out of the 17 tested HLA-DR molecules and also to several molecules such as HLA-DP, -DQ and murine IA(b) and IA(d). Sixteen out of the 27 peptides were recognized by PBMC from patients infected with different HIV-1 variants and 72% of such patients recognized at least 1 peptide. Immunization with a DNA vaccine (HIVBr27) encoding the identified peptides elicited IFN-gamma secretion against 11 out of the 27 peptides in BALB/c mice; CD4(+) and CD8(+) T-cell proliferation was observed against 8 and 6 peptides, respectively. HIVBr27 immunization elicited cross-clade T-cell responses against several HIV-1 peptide variants. Polyfunctional CD4(+) and CD8(+) T cells, able to simultaneously proliferate and produce IFN-gamma and TNF-alpha, were also observed. This vaccine concept may cope with HIV-1 genetic diversity as well as provide increased population coverage, which are desirable features for an efficacious strategy against HIV-1/AIDS.
Resumo:
The diagnosis of T-cell large granular lymphocytic leukemia in association with other B-cell disorders is uncommon but not unknown. However, the concomitant presence of three hematological diseases is extraordinarily rare. We report an 88-year-old male patient with three simultaneous clonal disorders, that is, CD4+/CD8(weak) T-cell large granular lymphocytic leukemia, monoclonal gammopathy of unknown significance and monoclonal B-cell lymphocytosis. The patient has only minimal complaints and has no anemia, neutropenia or thrombocytopenia. Lymphadenopathy and hepatosplenomegaly were not present. The three disorders were characterized by flow cytometry analysis, and the clonality of the T-cell large granular lymphocytic leukemia was confirmed by polymerase chain reaction. Interestingly, the patient has different B-cell clones, given that plasma cells of monoclonal gammopathy of unknown significance exhibited a kappa light-chain restriction population and, on the other hand, B-lymphocytes of monoclonal B-cell lymphocytosis exhibited a lambda light-chain restriction population. This finding does not support the antigen-driven hypothesis for the development of multi-compartment diseases, but suggests that T-cell large granular lymphocytic expansion might represent a direct antitumor immunological response to both B-cell and plasma-cell aberrant populations, as part of the immune surveillance against malignant neoplasms.
Resumo:
The aim of the present trial was to determine the frequencies and absolute number of B and T lymphocytes subpopulations in bovine leukemia virus (BLV)-infected dairy cows with distinct lymphocyte profile known as non-leukemic (AL) and persistent lymphocytosis (PL). Thus, 15 animals were selected and divided uniformly in three groups (negative, AL, PL). The BLV infection was detected by agar gel immunodiffusion and enzyme-linked immunosorbent-assay. The lymphocytes subsets were evaluated using monoclonal antibodies by flow cytometry. The results of the present study pointed out to an increase in B lymphocytes, and also an augment in CD5(+) and CD11b(+) cells in animals showing PL. Consequently, it can be observed a decrease in the percentage of T cells subsets in these animals. Conversely, no significant alterations in the absolute number of the T lymphocytes, T CD4(+) cells and T CD8(+) lymphocytes were found in BLV-infected dairy cows with PL. Therefore, the correlation between the absolute numbers of B- and T cell subsets in the peripheral blood applied to each group showed a significant and positive strong correlation between numbers of B cells and T cells or T CD8(+) cells in the PL animals, although the same cannot be predicted for T CD4(+) lymphocytes. No such correlation was encountered for the AL and negative-control animals.
Resumo:
The pathology of relapsing-remitting multiple sclerosis (RR-MS) is largely attributed to activated autoreactive effector T lymphocytes. The influence of microRNAs on the immune response has been shown to occur in different pathways of lymphocyte differentiation and function. Here, the expression of the miRNAs miR-15a/161 in PBMC, CD4(+), and CD8(+) from RR-MS patients has been investigated. BCL2, a known miR-15a/16-1 target, has also been analyzed. The results have shown that miR-15a/16-1 is downregulated in CD4(+) T cells, whereas BCL2 is highly expressed in RR-MS patients only. Our data suggest that miR-15a/16-1 can also modulate the BCL2 gene expression in CD4(+) T cells from RR-MS patients, thereby affecting apoptosis processes.