909 resultados para Business Intelligence,Data Warehouse,Sistemi Informativi
Resumo:
L’ultimo decennio ha visto un radicale cambiamento del mercato informatico, con la nascita di un numero sempre maggiore di applicazioni rivolte all’interazione tra utenti. In particolar modo, l’avvento dei social network ha incrementato notevolmente le possibilità di creare e condividere contenuti sul web, generando volumi di dati sempre maggiori, nell’ordine di petabyte e superiori. La gestione di tali quantità di dati ha portato alla nascita di soluzioni non relazionali appositamente progettate, dette NoSQL. Lo scopo di questo documento è quello di illustrare come i sistemi NoSQL, nello specifico caso di MongoDB, cerchino di sopperire alle difficoltà d’utilizzo dei database relazionali in un contesto largamente distribuito. Effettuata l'analisi delle principali funzionalità messe a disposizione da MongoDB, si illustreranno le caratteristiche di un prototipo di applicazione appositamente progettato che sfrutti una capacità peculiare di MongoDB quale la ricerca full-text. In ultima analisi si fornirà uno studio delle prestazioni di tale soluzione in un ambiente basato su cluster, evidenziandone il guadagno prestazionale.
Resumo:
Il presente elaborato ha come oggetto l’analisi delle prestazioni e il porting di un sistema di SBI sulla distribuzione Hadoop di Cloudera. Nello specifico è stato fatto un porting dei dati del progetto WebPolEU. Successivamente si sono confrontate le prestazioni del query engine Impala con quelle di ElasticSearch che, diversamente da Oracle, sfrutta la stessa componente hardware (cluster).
Resumo:
Negli ultimi anni la biologia ha fatto ricorso in misura sempre maggiore all’informatica per affrontare analisi complesse che prevedono l’utilizzo di grandi quantità di dati. Fra le scienze biologiche che prevedono l’elaborazione di una mole di dati notevole c’è la genomica, una branca della biologia molecolare che si occupa dello studio di struttura, contenuto, funzione ed evoluzione del genoma degli organismi viventi. I sistemi di data warehouse sono una tecnologia informatica che ben si adatta a supportare determinati tipi di analisi in ambito genomico perché consentono di effettuare analisi esplorative e dinamiche, analisi che si rivelano utili quando si vogliono ricavare informazioni di sintesi a partire da una grande quantità di dati e quando si vogliono esplorare prospettive e livelli di dettaglio diversi. Il lavoro di tesi si colloca all’interno di un progetto più ampio riguardante la progettazione di un data warehouse in ambito genomico. Le analisi effettuate hanno portato alla scoperta di dipendenze funzionali e di conseguenza alla definizione di una gerarchia nei dati. Attraverso l’inserimento di tale gerarchia in un modello multidimensionale relativo ai dati genomici sarà possibile ampliare il raggio delle analisi da poter eseguire sul data warehouse introducendo un contenuto informativo ulteriore riguardante le caratteristiche dei pazienti. I passi effettuati in questo lavoro di tesi sono stati prima di tutto il caricamento e filtraggio dei dati. Il fulcro del lavoro di tesi è stata l’implementazione di un algoritmo per la scoperta di dipendenze funzionali con lo scopo di ricavare dai dati una gerarchia. Nell’ultima fase del lavoro di tesi si è inserita la gerarchia ricavata all’interno di un modello multidimensionale preesistente. L’intero lavoro di tesi è stato svolto attraverso l’utilizzo di Apache Spark e Apache Hadoop.
Resumo:
Business Intelligence (BI) applications have been gradually ported to the Web in search of a global platform for the consumption and publication of data and services. On the Internet, apart from techniques for data/knowledge management, BI Web applications need interfaces with a high level of interoperability (similar to the traditional desktop interfaces) for the visualisation of data/knowledge. In some cases, this has been provided by Rich Internet Applications (RIA). The development of these BI RIAs is a process traditionally performed manually and, given the complexity of the final application, it is a process which might be prone to errors. The application of model-driven engineering techniques can reduce the cost of development and maintenance (in terms of time and resources) of these applications, as they demonstrated by other types of Web applications. In the light of these issues, the paper introduces the Sm4RIA-B methodology, i.e., a model-driven methodology for the development of RIA as BI Web applications. In order to overcome the limitations of RIA regarding knowledge management from the Web, this paper also presents a new RIA platform for BI, called RI@BI, which extends the functionalities of traditional RIAs by means of Semantic Web technologies and B2B techniques. Finally, we evaluate the whole approach on a case study—the development of a social network site for an enterprise project manager.
Resumo:
Context: Global Software Development (GSD) allows companies to take advantage of talent spread across the world. Most research has been focused on the development aspect. However, little if any attention has been paid to the management of GSD projects. Studies report a lack of adequate support for management’s decisions made during software development, further accentuated in GSD since information is scattered throughout multiple factories, stored in different formats and standards. Objective: This paper aims to improve GSD management by proposing a systematic method for adapting Business Intelligence techniques to software development environments. This would enhance the visibility of the development process and enable software managers to make informed decisions regarding how to proceed with GSD projects. Method: A combination of formal goal-modeling frameworks and data modeling techniques is used to elicitate the most relevant aspects to be measured by managers in GSD. The process is described in detail and applied to a real case study throughout the paper. A discussion regarding the generalisability of the method is presented afterwards. Results: The application of the approach generates an adapted BI framework tailored to software development according to the requirements posed by GSD managers. The resulting framework is capable of presenting previously inaccessible data through common and specific views and enabling data navigation according to the organization of software factories and projects in GSD. Conclusions: We can conclude that the proposed systematic approach allows us to successfully adapt Business Intelligence techniques to enhance GSD management beyond the information provided by traditional tools. The resulting framework is able to integrate and present the information in a single place, thereby enabling easy comparisons across multiple projects and factories and providing support for informed decisions in GSD management.
Resumo:
The purpose of this research is to propose a procurement system across other disciplines and retrieved information with relevant parties so as to have a better co-ordination between supply and demand sides. This paper demonstrates how to analyze the data with an agent-based procurement system (APS) to re-engineer and improve the existing procurement process. The intelligence agents take the responsibility of searching the potential suppliers, negotiation with the short-listed suppliers and evaluating the performance of suppliers based on the selection criteria with mathematical model. Manufacturing firms and trading companies spend more than half of their sales dollar in the purchase of raw material and components. Efficient data collection with high accuracy is one of the key success factors to generate quality procurement which is to purchasing right material at right quality from right suppliers. In general, the enterprises spend a significant amount of resources on data collection and storage, but too little on facilitating data analysis and sharing. To validate the feasibility of the approach, a case study on a manufacturing small and medium-sized enterprise (SME) has been conducted. APS supports the data and information analyzing technique to facilitate the decision making such that the agent can enhance the negotiation and suppler evaluation efficiency by saving time and cost.
Resumo:
With advances in science and technology, computing and business intelligence (BI) systems are steadily becoming more complex with an increasing variety of heterogeneous software and hardware components. They are thus becoming progressively more difficult to monitor, manage and maintain. Traditional approaches to system management have largely relied on domain experts through a knowledge acquisition process that translates domain knowledge into operating rules and policies. It is widely acknowledged as a cumbersome, labor intensive, and error prone process, besides being difficult to keep up with the rapidly changing environments. In addition, many traditional business systems deliver primarily pre-defined historic metrics for a long-term strategic or mid-term tactical analysis, and lack the necessary flexibility to support evolving metrics or data collection for real-time operational analysis. There is thus a pressing need for automatic and efficient approaches to monitor and manage complex computing and BI systems. To realize the goal of autonomic management and enable self-management capabilities, we propose to mine system historical log data generated by computing and BI systems, and automatically extract actionable patterns from this data. This dissertation focuses on the development of different data mining techniques to extract actionable patterns from various types of log data in computing and BI systems. Four key problems—Log data categorization and event summarization, Leading indicator identification , Pattern prioritization by exploring the link structures , and Tensor model for three-way log data are studied. Case studies and comprehensive experiments on real application scenarios and datasets are conducted to show the effectiveness of our proposed approaches.
Resumo:
I Big Data stanno guidando una rivoluzione globale. In tutti i settori, pubblici o privati, e le industrie quali Vendita al dettaglio, Sanità, Media e Trasporti, i Big Data stanno influenzando la vita di miliardi di persone. L’impatto dei Big Data è sostanziale, ma così discreto da passare inosservato alla maggior parte delle persone. Le applicazioni di Business Intelligence e Advanced Analytics vogliono studiare e trarre informazioni dai Big Data. Si studia il passaggio dalla prima alla seconda, mettendo in evidenza aspetti simili e differenze.
Business intelligence em sistemas de apoio à gestão de frotas: Análise de Tecnologias e metodologias
Resumo:
O objecto de estudo desta tese de mestrado surgiu da necessidade de dar resposta a uma proposta para uma solução de business intelligence a pedido de um cliente da empresa onde até à data me encontro a desempenhar funções de analista programador júnior. O projecto consistiu na realização de um sistema de monitorização de eventos e análise de operações, portanto um sistema integrado de gestão de frotas com módulo de business intelligence. Durante o decurso deste projecto foi necessário analisar metodologias de desenvolvimento, aprender novas linguagens, ferramentas, como C#, JasperReport, visual studio, Microsoft SQL Server entre outros. ABSTRACT: Business Intelligence applied to fleet management systems - Technologies and Methodologies Analysis. The object of study of this master's thesis was the necessity of responding to a proposal for a business intelligence solution at the request of a client company where so far I find the duties of junior programmer. The project consisted of a system event monitoring and analysis of operations, so an integrated fleet management with integrated business intelligence. During the course of this project was necessary to analyze development methodologies, learn new languages, tools such as C #, JasperReports, visual studio, Microsoft Sql Server and others.
Resumo:
This paper discusses the results of applied research on the eco-driving domain based on a huge data set produced from a fleet of Lisbon's public transportation buses for a three-year period. This data set is based on events automatically extracted from the control area network bus and enriched with GPS coordinates, weather conditions, and road information. We apply online analytical processing (OLAP) and knowledge discovery (KD) techniques to deal with the high volume of this data set and to determine the major factors that influence the average fuel consumption, and then classify the drivers involved according to their driving efficiency. Consequently, we identify the most appropriate driving practices and styles. Our findings show that introducing simple practices, such as optimal clutch, engine rotation, and engine running in idle, can reduce fuel consumption on average from 3 to 5l/100 km, meaning a saving of 30 l per bus on one day. These findings have been strongly considered in the drivers' training sessions.
Resumo:
Mestrado em Engenharia Informática - Área de Especialização em Tecnologias do Conhecimento e Decisão
Resumo:
O presente documento de dissertação retrata o desenvolvimento do projeto PDS-Portal Institucional cujo cerne é um sistema para recolha, armazenamento e análise de dados (plataforma de Business Intelligence). Este portal está enquadrado na área da saúde e é uma peça fundamental no sistema da Plataforma de dados da Saúde, que é constituído por quatro portais distintos. Esta plataforma tem como base um sistema totalmente centrado no utente, que agrega dados de saúde dos utentes e distribui pelos diversos intervenientes: utente, profissionais de saúde nacionais e internacionais e organizações de saúde. O objetivo principal deste projeto é o desenvolvimento do PDS-Portal Institucional, recorrendo a uma plataforma de Business Intelligence, com o intuito de potenciar os utilizadores de uma ferramenta analítica para análise de dados. Estando a informação armazenada em dois dos portais da Plataforma de dados da Saúde (PDS-Portal Utente e PDS-Portal Profissional), é necessário modular um armazém de dados que agregue a informação de ambos e, através do PDS-PI, distribua um conjunto de análises ao utilizador final. Para tal este sistema comtempla um mecanismo totalmente automatizado para extração, tratamento e carregamento de dados para o armazém central, assim como uma plataforma de BI que disponibiliza os dados armazenados sobre a forma de análises específicas. Esta plataforma permite uma evolução constante e é extremamente flexível, pois fornece um mecanismo de gestão de utilizadores e perfis, assim como capacita o utilizador de um ambiente Web para análise de dados, permitindo a partilha e acesso a partir de dispositivos móveis. Após a implementação deste sistema foi possível explorar os dados e tirar diversas conclusões que são de extrema importância tanto para a evolução da PDS como para os métodos de praticar os cuidados de saúde em Portugal. Por fim são identificados alguns pontos de melhoria do sistema atual e delineada uma perspetiva de evolução futura. É certo que a partir do momento que este projeto seja lançado para produção, novas oportunidades surgirão e o contributo dos utilizadores será útil para evoluir o sistema progressivamente.
Resumo:
Web 2.0 software in general and wikis in particular have been receiving growing attention as they constitute new and powerful tools, capable of supporting information sharing, creation of knowledge and a wide range of collaborative processes and learning activities. This paper introduces briefly some of the new opportunities made possible by Web 2.0 or the social Internet, focusing on those offered by the use of wikis as learning spaces. A wiki allows documents to be created, edited and shared on a group basis; it has a very easy and efficient markup language, using a simple Web browser. One of the most important characteristics of wiki technology is the ease with which pages are created and edited. The facility for wiki content to be edited by its users means that its pages and structure form a dynamic entity, in permanent evolution, where users can insert new ideas, supplement previously existing information and correct errors and typos in a document at any time, up to the agreed final version. This paper explores wikis as a collaborative learning and knowledge-building space and its potential for supporting Virtual Communities of Practice (VCoPs). In the academic years (2007/8 and 2008/9), students of the Business Intelligence module at the Master's programme of studies on Knowledge Management and Business Intelligence at Instituto Superior de Estatistica e Gestao de Informacao of the Universidade Nova de Lisboa, Portugal, have been actively involved in the creation of BIWiki - a wiki for Business Intelligence in the Portuguese language. Based on usage patterns and feedback from students participating in this experience, some conclusions are drawn regarding the potential of this technology to support the emergence of VCoPs; some provisional suggestions will be made regarding the use of wikis to support information sharing, knowledge creation and transfer and collaborative learning in Higher Education.
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação