943 resultados para Budgetary Expenditure,
Resumo:
We introduce a model of redistributive income taxation and public expenditure. This joint treatment permits analyzing the interdependencies between the two policies: one cannot be chosen independently of the other. Empirical evidence reveals that partisan confrontation essentially falls on expenditure policies rather than on income taxation. We examine the case in which the expenditure policy (or the size of government) is chosen by majority voting and income taxation is consistently adjusted. This adjustment consists of designing the income tax schedule that, given the expenditure policy, achieves consensus among the population. The model determines the consensus in- come tax schedule, the composition of public expenditure and the size of government. The main results are that inequality is negatively related to the size of government and to the pro-rich bias in public expenditure, and positively or negatively related to the marginal income tax, depending on substitutability between government supplied and market goods. These implications are validated using OECD data.
Resumo:
We show that standard expenditure multipliers capture economy-wide effects of new government projects only when financing constraints are not binding. In actual policy making, however, new projects usually need financing. Under liquidity constraints, new projects are subject to two opposite effects: an income effect and a set of spending substitution effects. The former is the traditional, unrestricted, multiplier effect; the latter is the result of expenditure reallocation to upheld effective financing constraints. Unrestricted multipliers will therefore be, as a general rule, upward biased and policy designs based upon them should be reassessed in the light of the countervailing substitution effects.
Resumo:
To further validate the doubly labeled water method for measurement of CO2 production and energy expenditure in humans, we compared it with near-continuous respiratory gas exchange in nine healthy young adult males. Subjects were housed in a respiratory chamber for 4 days. Each received 2H2(18)O at either a low (n = 6) or a moderate (n = 3) isotope dose. Low and moderate doses produced initial 2H enrichments of 5 and 10 X 10(-3) atom percent excess, respectively, and initial 18O enrichments of 2 and 2.5 X 10(-2) atom percent excess, respectively. Total body water was calculated from isotope dilution in saliva collected at 4 and 5 h after the dose. CO2 production was calculated by the two-point method using the isotopic enrichments of urines collected just before each subject entered and left the chamber. Isotope enrichments relative to predose samples were measured by isotope ratio mass spectrometry. At low isotope dose, doubly labeled water overestimated average daily energy expenditure by 8 +/- 9% (SD) (range -7 to 22%). At moderate dose the difference was reduced to +4 +/- 5% (range 0-9%). The isotope elimination curves for 2H and 18O from serial urines collected from one of the subjects showed expected diurnal variations but were otherwise quite smooth. The overestimate may be due to approximations in the corrections for isotope fractionation and isotope dilution. An alternative approach to the corrections is presented that reduces the overestimate to 1%.
Resumo:
Indirect calorimetry based on respiratory exchange measurement has been successfully used from the beginning of the century to obtain an estimate of heat production (energy expenditure) in human subjects and animals. The errors inherent to this classical technique can stem from various sources: 1) model of calculation and assumptions, 2) calorimetric factors used, 3) technical factors and 4) human factors. The physiological and biochemical factors influencing the interpretation of calorimetric data include a change in the size of the bicarbonate and urea pools and the accumulation or loss (via breath, urine or sweat) of intermediary metabolites (gluconeogenesis, ketogenesis). More recently, respiratory gas exchange data have been used to estimate substrate utilization rates in various physiological and metabolic situations (fasting, post-prandial state, etc.). It should be recalled that indirect calorimetry provides an index of overall substrate disappearance rates. This is incorrectly assumed to be equivalent to substrate "oxidation" rates. Unfortunately, there is no adequate golden standard to validate whole body substrate "oxidation" rates, and this contrasts to the "validation" of heat production by indirect calorimetry, through use of direct calorimetry under strict thermal equilibrium conditions. Tracer techniques using stable (or radioactive) isotopes, represent an independent way of assessing substrate utilization rates. When carbohydrate metabolism is measured with both techniques, indirect calorimetry generally provides consistent glucose "oxidation" rates as compared to isotopic tracers, but only when certain metabolic processes (such as gluconeogenesis and lipogenesis) are minimal or / and when the respiratory quotients are not at the extreme of the physiological range. However, it is believed that the tracer techniques underestimate true glucose "oxidation" rates due to the failure to account for glycogenolysis in the tissue storing glucose, since this escapes the systemic circulation. A major advantage of isotopic techniques is that they are able to estimate (given certain assumptions) various metabolic processes (such as gluconeogenesis) in a noninvasive way. Furthermore when, in addition to the 3 macronutrients, a fourth substrate is administered (such as ethanol), isotopic quantification of substrate "oxidation" allows one to eliminate the inherent assumptions made by indirect calorimetry. In conclusion, isotopic tracers techniques and indirect calorimetry should be considered as complementary techniques, in particular since the tracer techniques require the measurement of carbon dioxide production obtained by indirect calorimetry. However, it should be kept in mind that the assessment of substrate oxidation by indirect calorimetry may involve large errors in particular over a short period of time. By indirect calorimetry, energy expenditure (heat production) is calculated with substantially less error than substrate oxidation rates.
Resumo:
Whole body protein metabolism and resting energy expenditure (REE) were measured at 11, 23, and 33 wk of pregnancy in nine pregnant (not malnourished) Gambian women and in eight matched nonpregnant nonlactating (NPNL) matched controls. Rates of whole body nitrogen flux, protein synthesis, and protein breakdown were determined in the fed state from the level of isotope enrichment of urinary urea and ammonia during a period of 9 h after a single oral dose of [15N]glycine. At regular intervals, REE was measured by indirect calorimetry (hood system). Based on the arithmetic end-product average of values obtained with urea and ammonia, a significant increase in whole body protein synthesis was observed during the second trimester (5.8 +/- 0.4 g.kg-1.day-1) relative to values obtained both for the NPNL controls (4.5 +/- 0.3 g.kg-1.day-1) and those during the first trimester (4.7 +/- 0.3 g.kg-1.day-1). There was a significant rise in REE during the third trimester both in the preprandial and postprandial states. No correlation was found between REE after meal ingestion and the rate of whole body protein synthesis.
Resumo:
Background and Objectives: Studies show that inflammation can contribute to an increase in resting energy expenditure in patients with chronic kidney disease; however, findings about total energy expenditure (TEE) have not been reported. The aim of this study was to evaluate the effects of inflammation on TEE and physical activity energy expenditure in hemodialysis (HD) patients.Design: This was a cross-sectional study.Setting: This study was conducted from Hopital Edouard Herriot, Lyon, France.Patients: This study included 24 HD patients and 18 healthy subjects.Main Outcome Measure: TEE and step counts were measured over a 7-day period by the SenseWear Pro2 Armband in 24 HD patients (15 patients with C-reactive protein,5 mg/L, aged 67.0 +/- 6 14.7 years, and 9 with C-reactive protein >5 mg/L, aged 69.0 +/- 6 18.0 years) and compared with 18 healthy subjects (62.3 +/- 6 15.3 years).Results: Mean estimated TEE measured with SenseWear Pro2 Armband was significantly lower (25.5 +/- 4.1 kcal/kg/day) in patients with inflammation when compared with those without inflammation (32.0 +/- 6.7 kcal/kg/day) and with healthy subjects (31.8 +/- 6 7.0 kcal/kg/day) (P = .012). There was a difference in the physical activity (step counts) between patient groups (P < .05). Healthy subjects and patients without inflammation walked more (8,107 +/- 5,419 and 6,016 +/- 3,752 steps/day, respectively) as compared with patients with inflammation (2,801 +/- 2,754 steps/day, P = .001).Conclusion: Our findings suggest that patients with inflammation have a lower TEE when compared with healthy subjects and patients without inflammation. TEE is influenced by physical activity because patients with inflammation appear to be less active. (C) 2011 by the National Kidney Foundation, Inc. All rights reserved.
Resumo:
This paper develops a simple model that can be used to analyze the long-term sustainability of the contributive pension system and the steady-state response of pension expenditure to changes in some key demographic and economic variables, in the characteristics of the average pensioner and in the parameters that describe how pensions are calculated in Spain as a function of workers' Social Security contribution histories.
Resumo:
We studied the effect of smoking on energy expenditure in eight healthy cigarette smokers who spent 24 hours in a metabolic chamber on two occasions, once without smoking and once while smoking 24 cigarettes per day. Diet and physical exercise (30 minutes of treadmill walking) were standardized on both occasions. Physical activity in the chamber was measured by use of a radar system. Smoking caused an increase in total 24-hour energy expenditure (from a mean value [+/- SEM] of 2230 +/- 115 to 2445 +/- 120 kcal per 24 hours; P less than 0.001), although no changes were observed in physical activity or mean basal metabolic rate (1545 +/- 80 vs. 1570 +/- 70 kcal per 24 hours). During the smoking period, the mean diurnal urinary excretion of norepinephrine (+/- SEM) increased from 1.25 +/- 0.14 to 1.82 +/- 0.28 micrograms per hour (P less than 0.025), and mean nocturnal excretion increased from 0.73 +/- 0.07 to 0.91 +/- 0.08 micrograms per hour (P less than 0.001). These short-term observations demonstrate that cigarette smoking increases 24-hour energy expenditure by approximately 10 percent, and that this effect may be mediated in part by the sympathetic nervous system. The findings also indicate that energy expenditure can be expected to decrease when people stop smoking, thereby favoring the gain in body weight that often accompanies the cessation of smoking.
Resumo:
Report giving details of expenditure by HSS Trusts and Boards in the Financial year 2006/07.
Resumo:
Appendices 1 to 4 to the Summary of HPSS Expenditure in Northern Ireland 2005/06.
Resumo:
The increase in resting energy expenditure (REE) reported in patients with cystic fibrosis (CF) does not necessarily imply an increase in total energy expenditure (TEE). In this study REE was assessed with open-circuit indirect calorimetry, and free-living 24-hour TEE with the heart rate method. Thirteen patients with CF, aged 8 to 24 years, with adequate nutritional status and moderately decreased pulmonary function, were studied. They were compared with 13 healthy control subjects matched for gender, age, height, and nutritional status. Resting energy expenditure was higher in patients with CF (1512 +/- 88 kcal/day) than in control subjects (1339 +/- 76 kcal/day; p less than 0.01), whereas free-living 24-hour TEE (2345 +/- 127 kcal/day and 2358 +/- 256 kcal/day, respectively) and net mechanical work efficiency of walking on a treadmill (20.4 +/- 0.7% and 19.8 +/- 0.6%, respectively) were similar. Respiratory quotient was higher in patients with CF than in control subjects at rest (0.834 +/- 0.009 vs 0.797 +/- 0.008; p less than 0.05), and tended to remain so during physical exercise, indicating a higher contribution of carbohydrate oxidation to energy expenditure. We conclude that in free living conditions, patients with CF can compensate for their increase in REE by a reduction in spontaneous physical activities or other yet undefined mechanisms.
Resumo:
Department of Health – Comprehensive Review of Expenditure, September 2011 Click here to download PDF 1.24MB
Resumo:
Twenty-four-hour energy expenditure (EE), daily and sleeping EE, and the energy cost of a standardized treadmill exercise were assessed in a respiration chamber in 41 young pregnant Gambian women at 12 (n = 11), 24 (n = 15), and 36 (n = 15) wk of gestation and compared with 13 nonpregnant nonlactating (NPNL) control women. The rate of 24-h EE was significantly higher (P less than 0.001) at 36 wk gestation (8443 +/- 243 kJ/d) than in the NPNL group (6971 +/- 172 kJ/d) or at 12 and 24 wk (7088 +/- 222 and 7188 +/- 192 kJ/d, respectively). Per unit body weight, no more differences in 24-h EE, daily and sleeping EE, or energy cost of walking were observed between pregnant and NPNL women. There was no statistical difference in the 24-h respiratory quotient among the groups. We conclude that the state of pregnancy in Gambian women induces a progressive rise in 24-h EE, which becomes significant in the third trimester and is proportional to body weight.
Resumo:
The purpose of this study was to assess the validity of two common methods used to assess energy intake. A 3-day weighed dietary record and a dietary history were collected and compared with the total daily energy expenditure (TEE) assessed by the heart rate method in a group of 12 obese and 12 nonobese prepubertal children (mean age 9.3 +/- 1.1 years vs 9.3 +/- 0.4 years). The TEE value was higher in obese than in nonobese children (9.89 +/- 1.08 vs 8.13 +/- 1.39 MJ/day; p < 0.01). Energy intake assessed by the dietary record was significantly lower than TEE in the obese children (7.06 +/- 0.98 MJ/day; p < 0.001) but comparable to TEE in the nonobese children (8.03 +/- 0.99 MJ/day; p = not significant). Energy intake assessed by diet history was lower than TEE in the obese children (8.37 +/- 1.35 MJ/day, p < 0.05) but close to TEE in the nonobese children (8.64 +/- 1.54 MJ/day, p = not significant). These results suggest that obese children underreport food intake and that the dietary record and the diet history are not valid means of assessing energy intake in obese prepubertal children.