981 resultados para Broilers (chickens)
Resumo:
1. The synthesis of heat shock protein 70 (Hsp70) mRNA and the expression of Hsp70 in the liver of broiler chickens submitted to acute heat stress (35 degrees C for 5 h) was investigated.2. Hsp70 expression was detected by SDS-PAGE and Western blot analysis using a polyclonal antiserum against Hsp70 of Blastocladiella emersonii. The specific signal of Hsp70 mRNA was analysed by Northern blot using as probe a Hsp70 cDNA of B. emersonii.3. An increase in the amount of Hsp70 was detected from the first up to the fifth hour of acute heat exposure. This increase in the amount of Hsp70 was accompanied by an increase in Hsp70 mRNA which peaked at 3 h.4. This study shows that the heat induced increase in Hsp70 mRNA and protein in broiler liver, in vivo, are time dependent, similar to that in mammals.
Resumo:
An investigation was carried out to verify whether the heat stress hyperthermia response of broilers is prostaglandin-dependent. Male broiler chickens of the Hubbard-Petterson strain, aged 35-49 days, were used. Chickens were injected with indomethacin (1 mg/kg intraperitoneally) 15 min before or 2 h after heat exposure (at 35 degrees C for 4 h), and rectal temperature was measured before injection and up to 4 h thereafter. Birds were separated into two groups with and without access to water during heat stress. The increase in rectal temperature was lower (P<0.05) in birds with access to drinking water during heat exposure. All birds injected with indomethacin exhibited an increase in rectal temperature, irrespective of whether indomethacin was administered before or in the course of the rise in temperature. The results revealed that the increase in rectal temperature during heat exposure is not prostaglandin-dependent, and that the use of cyclooxigenase inhibitors is not recommended to attenuate heat stress hyperthermia in broiler chickens.
Resumo:
1. The C-13 turnover rates of the liver and thoracic pectoral muscle of growing broilers were determined by feeding diets with varying C-13 content.2. Male chicks ( 1- d- old) were subjected to treatments based on free choice of 5 different mixes of energy and protein sources from plants with C-3 and C-4 photosynthetic pathways that had differing C-13 content. Rice bran ( R) and soybean meal ( S) were the C-3 sources, while maize ( C) and maize gluten meal ( G) were the C-4 sources. Choices were R + S, C + G, R + G, C + S or R + C +G + S. The 6th treatment was a complete feed ( CF) that was similar to a commercial broiler feed.3. The isotopic composition of the birds' tissues was representative of the isotopic composition of the diets. The assimilation was faster for C-3, in both liver and muscle, than for C-4 diets, and give the delta per mil difference between the diet and tissues.4. The liver is the most active metabolic tissue and gave more rapid isotope turnover than in muscle.
Resumo:
The effect of feed restriction and enzymatic supplementation on intestinal and pancreatic enzyme activities and weight gain was studied in broiler chickens. Quantitative feed restriction was applied to chickens from 7 to 14 d of age. An enzyme complex mainly consisting of protease and amylase was added to the chicken ration from hatching to the end of the experiment. Birds subjected to feed restriction whose diet was not supplemented showed an increase in sucrase, amylase, and lipase activities immediately after the restriction period. Amylase, lipase, and chymotrypsin activities were higher in chickens subjected to feed restriction and fed a supplemented diet than in those only subjected to feed restriction. Trypsin activity increased after feed restriction and after supplementation, but there was no interaction between these effects. Early feed restriction had no effect on enzyme activity in 42-d-old chickens. Chickens subjected to early restriction and fed the supplemented diet presented higher sucrase, maltase, and lipase activities than nonsupplemented ones (P < 0.05). There was no effect of early feed restriction or diet supplementation on weight gain to 42 d. Percentage weight gain from 14 to 42 d of age was equivalent in feed-restricted and ad libitum fed birds. Feed-restricted broilers fed a supplemented diet showed a higher percentage weight gain than nonsupplemented birds. We conclude that enzymatic supplementation potentiates the effect of feed restriction on digestive enzyme activity and on weight gain.
Resumo:
This investigation was carried out to study the influence of early qualitative feed restriction and environmental rearing temperature on long bone development in broiler. Energy and protein restriction reduced femur width and humerus weight, but did not affect tibia parameters. Broilers kept at cold environmental temperature showed reduced femur, tibia and humerus length and tibia weight, but the calculated density was not affected by rearing temperature. These findings suggest that qualitative feed restriction and environmental temperature influenced the normal long bone growth; however, bone weight/bone length index (calculated density) was not affected by rearing temperature. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Specific essential oil (EO) blends and probiotics used as feed additives have been shown to promote healthy digestive microbials resulting in improved poultry production. Two consecutive experiments were conducted with broilers fed corn-soybean meal diets to determine comparative effects of feed additives on ileal and caecal microbial populations (MP). Ross 708 broilers were placed in 84 pens with previously used litter and treatments maintained in the same pens for both experiments. Eight treatment groups were fed diets containing: Bacitracin methylene disalicylate (BMD) as positive control (PC); no additives as negative control (NC); three probiotics: BC-30; BioPlus 2B (B2B); and Calsporin; and the essential oil blends Crina Poultry Plus (CPP) at 300 or 150 ppm in the first experiment; and CPP at 300 ppm and Crina Poultry AF at 100 ppm in experiment 2. Starter and grower diets contained the ionophore (Coban). Ileal and caecal samples were collected at 43 days of age from male broilers. The DNA of microbial populations was isolated from digesta samples and analysed by denaturing gradient gel electrophoresis to generate percentage similarity coefficients (%SC) from band pattern dendrograms. Differences were observed in ileal and caecal populations depending on treatment, respectively, and especially between experiments. Broilers fed diets with probiotics had very similar MP. The EO CPP at 300 ppm resulted in ilea! MP similar to those observed in chickens fed probiotics. We concluded that antibiotic treatment affected ileal, but no caecal MP. More pronounced changes in ileal and caecal MP were seen in broilers at 43 days of age following probiotic and essential oil treatments.
Resumo:
Four trials of identical experimental design were conducted to determine the effects of temperature, dietary Lys level, and dietary Arg:Lys ratios on performance and carcass yield of male broilers. Birds of a commercial strain were grown from 21 to 42 d of age in wire-floored finishing batteries placed in environmental chambers. The chambers were programmed to provide either a constant thermoneutral temperature (21.1 C), a constant cold temperature (15.5 C), or a cycling hot diurnal temperature (25.5 to 33.3 C). Within each environment there was a factorial arrangement of three Lys levels (1.0, 1.1, and 1.2%) with four Arg:Lys ratios (1.1:1, 1.2:1, 1.3:1, and 1.4:1). Environmental temperature significantly influenced virtually every characteristic examined. Hot cyclic temperatures reduced weight gain, feed intake, and breast meat yield, and increased feed conversion, dressing percentage, leg quarter yield, and abdominal fat content. The cold environment promoted increased feed intake and mortality. Ascites and cardiomyopathy were the leading causes of death under cold exposure and thermoneutral conditions, whereas complications arising from heat exposure were the main cause of death under hot cyclic conditions. Levels of Lys affected leg quarter yield and abdominal fat content over all environments but increased breast meat yield only under cold conditions. Increasing Arg: Lys ratios improved feed conversion and dressing percentage and reduced abdominal fat content; it could not be determined whether these responses were consistent with Arg per se or were due to a nonspecific N response. As increasing Lys levels or Arg:Lys ratios did not improve weight gain, increase breast meat yield, or attenuate adverse effects due to heat or cold exposure, it is concluded that the levels of Lys and Arg suggested for 21 to 42 d by the NRC are adequate for birds of this age under the environmental conditions encountered.
Resumo:
Two trials were carried out to test the susceptibility for metabolic disturbances of different strains of male broilers. In Trial 1, 1,890 male chickens were allotted in a randomized block design with seven treatments (Arbor Acres, Avian Farms, Cobb-500, Hubbard-Peterson, ISA, Naked Neck, and Ross) and six blocks of 45 chickens. Trial 2 involved 2,184 male chickens of six strains (Arbor Acres, Avian Farms, Cobb 500, Hubbard-Peterson, ISA Naked Neck, and Ross) allotted in seven complete blocks of 52 birds. The same management system was adopted for all birds, reared up to 42 d in an open house during late winter (Trial 1) or late autumn (Trial 2). The most marked differences observed among the strains tested was the lower BW and higher feed conversion of Naked Neck broilers. Total percentage mortalities were high among the most productive broilers, being more than 50% due to sudden death (SDS) and ascites syndrome (AS). No Naked Neck birds died as a consequence of these disturbances and the total mortalities were significantly lower (P ≤ 0.05) than the other strains. The ratio of right ventricle weight to total ventricle weight of the dead birds was over 0.25, except for Naked Neck birds, which presented a nonhypertrophic ratio. The two trials confirmed the relationship between high productivity and high incidence of SDS and AS and indicated that Naked Neck male broilers are resistant to these metabolic disturbances.
Resumo:
Seven male broiler strains (Arbor Acres, Avian Farms, Cobb-500, Hubbard-Peterson, ISA, Naked Neck, and Ross) were compared for their growth rate, feed efficiency, and mortality due to sudden death and ascites. In addition, weekly plasma levels of thyroid hormones [3,3′,5-triiodothyronine (T3) thyroxine (T4), T3: T4 ratio, growth hormone (GH), and insulin-like growth factor-I (IGF-I)] were determined. The highly productive, commercial strains were very similar in their endocrine profiles but differed markedly from the Naked Neck chickens. Naked Neck chickens were characterized by higher plasma T3 and lower T4 levels at similar ages as well as when compared on the same body weight basis. The present findings support the hypothesis that the slightly hypothyroid state of high productive broilers renders them more sensitive to metabolic disorders. Naked Neck chickens also had higher plasma GH levels than those of their age-matched commercial broilers. The coefficient of variation for GH was highest for Naked Neck chickens, which is indicative for an amplified GH burst amplitude. It may be stated that changes in plasma thyroid hormone concentration in indirect response to selection for low feed conversion and fast growth may be causatively linked to susceptibility for metabolic disturbances such as sudden death syndrome and ascites.
Resumo:
Sodium (Na+) and chloride (Cl-) nutritional requirements, dietary electrolyte balance (DEB), and their effects on acid-base balance, litter moisture, and tibial dyschondroplasia (TD) incidence for young broiler chickens were evaluated in two trials. One-day-old Cobb broilers were distributed in a completely randomized design with six treatments, five replicates, and 50 birds per experimental unit. Treatments used in both experiments were a basal diet with 0.10% Na+ (Experiment 1) or Cl- (Experiment 2) supplemented to result in diets with Na+ or Cl- levels of 0.10, 0.15, 0.20, 0.25 ,0.30, or 0.35%, respectively. In Experiment 1, results indicated an optimum Na+ requirement of 0.26%. Sodium levels caused a linear increase in arterial blood gas parameters, indicating an alkalogenic effect of Na+. The hypertrophic area of growth plate in the proximal tibiotarsi decreased with Na+ levels. The TD incidence decreased with increases in dietary Na+. Litter moisture increased linearly with sodium levels. In Experiment 2, the Cl- requirement was estimated as 0.25%. Chloride levels caused a quadratic effect (P ≤ 0.01) on blood gas parameters, with an estimated equilibrium [blood base excess (BE) = 0] at 0.30% of dietary CT-. No Cl- treatment effects (P ≥ 0.05) were observed on litter moisture or TD incidence. The best DEB for maximum performance was 298 to 315 mEq/kg in Experiment 1 and 246 to 264 mEq/kg in Experiment 2. We concluded that the Na+ and Cl- requirements for optimum performance of young broiler chickens were 0.28 and 0.25%, respectively.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Broiler chicks aged 12 h after hatching were allotted according to a block design in a 7 x 2 factorial schedule of 14 treatments and four replications of 50 chicks each one. The main experimental factors were fasting for 0, 6, 12, 18, 24, 30, and 36 h after chick placement and sex. Independent of sex, fasting had a negative linear effect on weight and productivity of broilers at market age (42 d) without affecting feed conversion or mortality index. Groups subjected to 18 and 36 h of fasting after placement, corresponding to 30 and 48 h posthatching fasting, had lower biometrical values for small intestine (length, weight, and size; villus height; and crypt depth) than chicks fed immediately after placement. According to the Pearson test, BW of birds at 21 and 42 d were significantly correlated to BW at 7 d (r = 0.77) and 21 d (r = 0.45), respectively. Males performed better than females but had higher mortality rates. Fasting did not influence serum concentrations of corticosterone or sexual steroid hormones. Nevertheless, early signs of sexual dimorphism arose from the high estradiol (E2) concentration on female serum. Heterophil:lymphocyte ratio was not different among treatments, indicating that early fasting did not seem to be a stress factor 21 or 42 d after fasting. The results suggested a maximum fasting of 24 h after hatching in order to preserve broiler productivity at market age.
Resumo:
Individually caged male Cobb broilers (24), 44 d of age, were used to evaluate effects of heat stress (1 d of data collection) and dietary electrolyte balance (DEB; Na + K - Cl, mEq/kg from 1 d of age). During summer rearing, mortality was variable, but DEB 240 improved growth, feed conversion ratio, water intake, and waterrfeed ratio vs. DEB 0. The temperature sequence for heat stress was 24 to 32°C in 30 min, 32 to 36°C in 30 min, 36 to 37°C in 15 min, and 37 to 41°C in 45 min. Maximum temperature was held for 15, 60, 90, or 360 min for data collection (relative humidity averaged 42 ± 7%). Results from the same room before and after heat stress were analyzed by DEB (1-factor ANOVA) and before vs. after heat stress compared across DEB (2-sample t-test). Heat stress decreased blood Na, K, and pCO2, and lymphocytes but increased heterophils. Blood HCO3 rose, Cl declined, and hematocrit gave a concave pattern (lowest at DEB 120) as DEB increased. After heat stress, DEB O decreased blood Na and K, and DEB O and 120 levels decreased blood HCO3. After heat stress blood pCO2 and hemoglobin decreased with DEB 240, but it had highest pCO2, a key factor. The DEB 120 gave longest times to panting and prostration with DEB O and 240 results lower but similar statistically. In heat stress, DEB 360 was excessive, DEB 120 and 240 were favorable, and DEB 0 was intermediate based on hematology, panting, and prostration responses.
Resumo:
Two experiments were conducted to develop and evaluate a model to estimate ME requirements and determine Gompertz growth parameters for broilers. The first experiment was conducted to determine maintenance energy requirements and the efficiencies of energy utilization for fat and protein deposition. Maintenance ME (ME m) requirements were estimated to be 157.8, 112.1, and 127.2 kcal of ME/kg 0.75 per day for broilers at 13, 23, and 32°C, respectively. Environmental temperature (T) had a quadratic effect on maintenance requirements (ME m = 307.87 - 15.63T + 0.3105T 2; r 2= 0.93). Energy requirements for fat and protein deposition were estimated to be 13.52 and 12.59 kcal of ME/g, respectively. Based on these coefficients, a model was developed to calculate daily ME requirements: ME = BW 0.75 (307.87 - 15.63T + 0.3105 T 2) + 13.52 G f + 12.59 G p. This model considers live BW, the effects of environmental temperature, and fractional fat (G f) and protein (G p) deposition. The second experiment was carried out to estimate the growth parameters of Ross broilers and to collect data to evaluate the ME requirement model proposed. Live BW, empty feather-free carcass, weight of the feathers, and carcass chemical compositions were analyzed until 16 wk of age. Parameters of Gompertz curves for each component were estimated. Males had higher growth potential and higher capacity to deposit nutrients than females, except for fat deposition. Data of BW and body composition collected in this experiment were fitted into the energy model proposed herein and the equations described by Emmans (1989) and Chwalibog (1991). The daily ME requirements estimated by the model determined in this study were closer to the ME intake observed in this trial compared with other models. ©2005 Poultry Science Association, Inc.
Resumo:
Heat stress causes significant economic losses on broilers production due to poorer performance and carcass quality. Considering that protein has the highest heat increment among nutrients, it has been suggested that protein levels should be reduced in diets for heat-exposed broilers. Nevertheless, there are no conclusive results on the benefits of such practice, and further studies should be performed to elucidate some reported discrepancies. Thus, a trial was carried out to evaluate the effects of dietary protein levels (17, 20 and 23%) and environmental temperature (22 and 32°C) on the performance, nutrients digestibility, and energy and protein metabolism of broiler chickens from 21 to 42 days of age. Nutrients digestibility was determined by total excreta collection, and energy and protein metabolism was evaluated by comparative slaughter method. It was concluded that (1) heat exposure impairs broilers performance and increases nitrogen excretion, but do not change nutrients digestibility; (2) high-protein diets are technically feasible and promotes lower heat production for broilers reared under thermoneutral or hot environments, however, high-protein diets increases nitrogen excretion. © Asian Network for Scientific Information, 2007.