433 resultados para Breath


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Cystic fibrosis (CF) lung disease starts in the first months of life often before the onset of clinical symptoms. Multiple breath washout (MBW) detects abnormal lung function in infants and young children in the laboratory setting. OBJECTIVE The aim of this study was to determine the feasibility of MBW in 0- to 4-year-old children with CF and non-CF controls in the clinical setting. METHODS Fourteen children with CF (mean age 1.3 ± 1.0 years) and 26 age-matched non-CF controls were sedated with chloral hydrate and MBW was performed with sulfur hexafluoride. RESULTS MBW measurements were successful in 27 of 40 children (67.5%). The mean lung clearance index (LCI) was significantly higher in CF patients compared to non-CF controls (p = 0.006). Further, the frequency of elevated LCI (z-score >1.96) was significantly increased in CF patients compared to controls (p = 0.0003). CONCLUSIONS We conclude that MBW is feasible and sensitive to detect abnormal lung function in infants and young children with CF in the clinical setting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE The safe clinical implementation of pencil beam scanning (PBS) proton therapy for lung tumors is complicated by the delivery uncertainties caused by breathing motion. The purpose of this feasibility study was to investigate whether a voluntary breath-hold technique could limit the delivery uncertainties resulting from interfractional motion. METHODS AND MATERIALS Data from 15 patients with peripheral lung tumors previously treated with stereotactic radiation therapy were included in this study. The patients had 1 computed tomographic (CT) scan in voluntary breath-hold acquired before treatment and 3 scans during the treatment course. PBS proton treatment plans with 2 fields (2F) and 3 fields (3F), respectively, were calculated based on the planning CT scan and subsequently recalculated on the 3 repeated CT scans. Recalculated plans were considered robust if the V95% (volume receiving ≥95% of the prescribed dose) of the gross target volume (GTV) was within 5% of what was expected from the planning CT data throughout the simulated treatment. RESULTS A total of 14/15 simulated treatments for both 2F and 3F met the robustness criteria. Reduced V95% was associated with baseline shifts (2F, P=.056; 3F, P=.008) and tumor size (2F, P=.025; 3F, P=.025). Smaller tumors with large baseline shifts were also at risk for reduced V95% (interaction term baseline/size: 2F, P=.005; 3F, P=.002). CONCLUSIONS The breath-hold approach is a realistic clinical option for treating lung tumors with PBS proton therapy. Potential risk factors for reduced V95% are small targets in combination with large baseline shifts. On the basis of these results, the baseline shift of the tumor should be monitored (eg, through image guided therapy), and appropriate measures should be taken accordingly. The intrafractional motion needs to be investigated to confirm that the breath-hold approach is robust.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVES Multiple-breath washout (MBW) is an attractive test to assess ventilation inhomogeneity, a marker of peripheral lung disease. Standardization of MBW is hampered as little data exists on possible measurement bias. We aimed to identify potential sources of measurement bias based on MBW software settings. METHODS We used unprocessed data from nitrogen (N2) MBW (Exhalyzer D, Eco Medics AG) applied in 30 children aged 5-18 years: 10 with CF, 10 formerly preterm, and 10 healthy controls. This setup calculates the tracer gas N2 mainly from measured O2 and CO2concentrations. The following software settings for MBW signal processing were changed by at least 5 units or >10% in both directions or completely switched off: (i) environmental conditions, (ii) apparatus dead space, (iii) O2 and CO2 signal correction, and (iv) signal alignment (delay time). Primary outcome was the change in lung clearance index (LCI) compared to LCI calculated with the settings as recommended. A change in LCI exceeding 10% was considered relevant. RESULTS Changes in both environmental and dead space settings resulted in uniform but modest LCI changes and exceeded >10% in only two measurements. Changes in signal alignment and O2 signal correction had the most relevant impact on LCI. Decrease of O2 delay time by 40 ms (7%) lead to a mean LCI increase of 12%, with >10% LCI change in 60% of the children. Increase of O2 delay time by 40 ms resulted in mean LCI decrease of 9% with LCI changing >10% in 43% of the children. CONCLUSIONS Accurate LCI results depend crucially on signal processing settings in MBW software. Especially correct signal delay times are possible sources of incorrect LCI measurements. Algorithms of signal processing and signal alignment should thus be optimized to avoid susceptibility of MBW measurements to this significant measurement bias.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Analysis of exhaled volatile organic compounds (VOCs) in breath is an emerging approach for cancer diagnosis, but little is known about its potential use as a biomarker for colorectal cancer (CRC). We investigated whether a combination of VOCs could distinct CRC patients from healthy volunteers. Methods: In a pilot study, we prospectively analyzed breath exhalations of 38 CRC patient and 43 healthy controls all scheduled for colonoscopy, older than 50 in the average-risk category. The samples were ionized and analyzed using a Secondary ElectroSpray Ionization (SESI) coupled with a Time-of-Flight Mass Spectrometer (SESI-MS). After a minimum of 2 hours fasting, volunteers deeply exhaled into the system. Each test requires three soft exhalations and takes less than ten minutes. No breath condensate or collection are required and VOCs masses are detected in real time, also allowing for a spirometric profile to be analyzed along with the VOCs. A new sampling system precludes ambient air from entering the system, so background contamination is reduced by an overall factor of ten. Potential confounding variables from the patient or the environment that could interfere with results were analyzed. Results: 255 VOCs, with masses ranging from 30 to 431 Dalton have been identified in the exhaled breath. Using a classification technique based on the ROC curve for each VOC, a set of 9 biomarkers discriminating the presence of CRC from healthy volunteers was obtained, showing an average recognition rate of 81.94%, a sensitivity of 87.04% and specificity of 76.85%. Conclusions: A combination of cualitative and cuantitative analysis of VOCs in the exhaled breath could be a powerful diagnostic tool for average-risk CRC population. These results should be taken with precaution, as many endogenous or exogenous contaminants could interfere as confounding variables. On-line analysis with SESI-MS is less time-consuming and doesn’t need sample preparation. We are recruiting in a new pilot study including breath cleaning procedures and spirometric analysis incorporated into the postprocessing algorithms, to better control for confounding variables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have spectroscopically determined breath ammonia levels in seven patients with end-stage renal disease while they were undergoing hemodialysis at the University of California, Los Angeles, dialysis center. We correlated these measurements against simultaneously taken blood samples that were analyzed for blood urea nitrogen (BUN) and creatinine, which are the accepted standards indicating the level of nitrogenous waste loading in a patient's bloodstream. Initial levels of breath ammonia, i.e., at the beginning of dialysis, are between 1,500 ppb and 2,000 ppb (parts per billion). These levels drop very sharply in the first 15–30 min as the dialysis proceeds. We found the reduction in breath ammonia concentration to be relatively slow from this point on to the end of dialysis treatment, at which point the levels tapered off at 150 to 200 ppb. For each breath ammonia measurement, taken at 15–30 min intervals during the dialysis, we also sampled the patient's blood for BUN and creatinine. The breath ammonia data were available in real time, whereas the BUN and creatinine data were available generally 24 h later from the laboratory. We found a good correlation between breath ammonia concentration and BUN and creatinine. For one of the patients, the correlation gave an R2 of 0.95 for breath ammonia and BUN correlation and an R2 of 0.83 for breath ammonia and creatinine correlation. These preliminary data indicate the possibility of using the real-time breath ammonia measurements for determining efficacy and endpoint of hemodialysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.