Impact of Software Settings on Multiple-Breath Washout Outcomes


Autoria(s): Summermatter, Selina; Singer, Florian; Latzin, Philipp; Yammine, Sophie
Data(s)

2015

Resumo

BACKGROUND AND OBJECTIVES Multiple-breath washout (MBW) is an attractive test to assess ventilation inhomogeneity, a marker of peripheral lung disease. Standardization of MBW is hampered as little data exists on possible measurement bias. We aimed to identify potential sources of measurement bias based on MBW software settings. METHODS We used unprocessed data from nitrogen (N2) MBW (Exhalyzer D, Eco Medics AG) applied in 30 children aged 5-18 years: 10 with CF, 10 formerly preterm, and 10 healthy controls. This setup calculates the tracer gas N2 mainly from measured O2 and CO2concentrations. The following software settings for MBW signal processing were changed by at least 5 units or >10% in both directions or completely switched off: (i) environmental conditions, (ii) apparatus dead space, (iii) O2 and CO2 signal correction, and (iv) signal alignment (delay time). Primary outcome was the change in lung clearance index (LCI) compared to LCI calculated with the settings as recommended. A change in LCI exceeding 10% was considered relevant. RESULTS Changes in both environmental and dead space settings resulted in uniform but modest LCI changes and exceeded >10% in only two measurements. Changes in signal alignment and O2 signal correction had the most relevant impact on LCI. Decrease of O2 delay time by 40 ms (7%) lead to a mean LCI increase of 12%, with >10% LCI change in 60% of the children. Increase of O2 delay time by 40 ms resulted in mean LCI decrease of 9% with LCI changing >10% in 43% of the children. CONCLUSIONS Accurate LCI results depend crucially on signal processing settings in MBW software. Especially correct signal delay times are possible sources of incorrect LCI measurements. Algorithms of signal processing and signal alignment should thus be optimized to avoid susceptibility of MBW measurements to this significant measurement bias.

Formato

application/pdf

Identificador

http://boris.unibe.ch/80041/1/journal.pone.0132250.PDF

Summermatter, Selina; Singer, Florian; Latzin, Philipp; Yammine, Sophie (2015). Impact of Software Settings on Multiple-Breath Washout Outcomes. PLoS ONE, 10(7), e0132250. Public Library of Science 10.1371/journal.pone.0132250 <http://dx.doi.org/10.1371/journal.pone.0132250>

doi:10.7892/boris.80041

info:doi:10.1371/journal.pone.0132250

info:pmid:26167682

urn:issn:1932-6203

Idioma(s)

eng

Publicador

Public Library of Science

Relação

http://boris.unibe.ch/80041/

Direitos

info:eu-repo/semantics/openAccess

Fonte

Summermatter, Selina; Singer, Florian; Latzin, Philipp; Yammine, Sophie (2015). Impact of Software Settings on Multiple-Breath Washout Outcomes. PLoS ONE, 10(7), e0132250. Public Library of Science 10.1371/journal.pone.0132250 <http://dx.doi.org/10.1371/journal.pone.0132250>

Palavras-Chave #610 Medicine & health
Tipo

info:eu-repo/semantics/article

info:eu-repo/semantics/publishedVersion

PeerReviewed