918 resultados para Boost
Resumo:
A Bond Graph is a graphical modelling technique that allows the representation of energy flow between the components of a system. When used to model power electronic systems, it is necessary to incorporate bond graph elements to represent a switch. In this paper, three different methods of modelling switching devices are compared and contrasted: the Modulated Transformer with a binary modulation ratio (MTF), the ideal switch element, and the Switched Power Junction (SPJ) method. These three methods are used to model a dc-dc Boost converter and then run simulations in MATLAB/SIMULINK. To provide a reference to compare results, the converter is also simulated using PSPICE. Both quantitative and qualitative comparisons are made to determine the suitability of each of the three Bond Graph switch models in specific power electronics applications
Resumo:
Os controles de capitais estão novamente em voga em razão dos países emergentes reintroduzirem essas medidas nos últimos anos face a abundante entrada de capital internacional. As autoridades argumentam que tais medidas protegem as economias no caso de uma “parada abrupta” desses fluxos. Será demonstrado que os controles de capitais parecem fazer com que as economias emergentes (EMEs) fiquem mais resistentes diante de uma crise financeira (por exemplo, uma queda na atividade econômica seguida de uma crise é menor quando o controle é maior). No entanto, os controles de capitais parecem deixar as economias emergentes (EMEs) também mais propícias a uma crise. Deste modo, as autoridades devem ser cautelosas na avaliação quanto aos riscos e benefícios relativos a aplicação das medidas dos controles de capitais.
Resumo:
Capital controls are again in vogue as a number of emerging markets have reintroduced these measures in recent years in response to a “flood” of international capital. Policymakers use these tools to buttress their economies against the “sudden stop” risk that accompanies international capital flows. Using a panel VAR model, we show that capital controls appear to make emerging market economies (EMEs) more resistant to financial crises by showing that lower post-crisis output loss is correlated with stronger capital controls. However, EMEs that employ capital controls seem to be more crisis-prone. Thus, policymakers should carefully evaluate whether the benefits of capital controls outweigh their costs.
Resumo:
The need to implement a software architecture that promotes the development of a SCADA supervisory system for monitoring industrial processes simulated with the flexibility of adding intelligent modules and devices such as CLP, according to the specifications of the problem, it was the motivation for this work. In the present study, we developed an intelligent supervisory system on a simulation of a distillation column modeled with Unisim. Furthermore, OLE Automation was used as communication between the supervisory and simulation software, which, with the use of the database, promoted an architecture both scalable and easy to maintain. Moreover, intelligent modules have been developed for preprocessing, data characteristics extraction, and variables inference. These modules were fundamentally based on the Encog software
Resumo:
The use of Field Programmable Gate Array (FPGA) for development of digital control strategies for power electronics applications has aroused a growing interest of many researchers. This interest is due to the great advantages offered by FPGA, which include: lower design effort, high performance and highly flexible prototyping. This work proposes the development and implementation of an unified one-cycle controller for boost CFP rectifier based on FPGA. This controller can be applied to a total of twelve converters, six inverters and six rectifiers defined by four single phase VSI topologies and three voltage modulation types. The topologies considered in this work are: full-bridge, interleaved full-bridge, half-bridge and interleaved half-bridge. While modulations are classified in bipolar voltage modulation (BVM), unipolar voltage modulation (UVM) and clamped voltage modulation (CVM). The proposed project is developed and prototyped using tools Matlab/Simulink® together with the DSP Builder library provided by Altera®. The proposed controller was validated with simulation and experimental results
Resumo:
This paper presents a new single-phase interleaved high power factor boost pre-regulator operating in critical conduction mode, where the switches and boost diode performing zero-current commutations during its turn-off, eliminating the disadvantages related to the reverse recovery losses and electromagnetic interference problems of the boost diode, when operating in the continuous conduction mode. The interleaving technique is applied in the power cell, providing a significant input current ripple reduction in comparison to discontinuous mode of operation, due to its input current continuous conduction operation. This paper presents a complete modeling for the converter operating in critical conduction mode, resulting in an improved design procedure for interleaved techniques with high input power factor, a complete design procedure, and main simulation results from a design example with two interleaved cells rated at 1kW, 400V output voltage and 220V rms input voltage.
Resumo:
This paper presents a novel single-phase high-power-factor (HPF) pulsewidth-modulated (PWM) boost rectifier featuring soft commutation of the active switches at zero current (ZC), It incorporates the most desirable properties of conventional PWM and soft-switching resonant techniques.The input current shaping is achieved with average current mode control and continuous inductor current mode.This new PWM converter provides ZC turn on and turn off of the active switches, and it is suitable for high-power applications employing insulated gate bipolar transistors (IGBT's),The principle of operation, the theoretical analysis, a design example, and experimental results from a laboratory prototype rated at 1600 W with 400-Vdc output voltage are presented. The measured efficiency and the power factor were 96.2% and 0.99%, respectively, with an input current total harmonic distortion (THD) equal to 3.94%, for an input voltage with THD equal to 3.8%, at rated load.
Resumo:
This paper presents a 2kW single-phase high power factor boost rectifier with four cells in interleave connection, operating in critical conduction mode, and employing a soft-switching technique, controlled by Field Programmable Gate Array (FPGA). The soft-switching technique Is based on zero-current-switching (ZCS) cells, providing ZC (zero-current) turn-on and ZCZV (zero-current-zero-voltage) turn-off for the active switches, and ZV (zero-voltage) turn-on and ZC (zero-current) turn-off for the boost diodes. The disadvantages related 'to reverse recovery effects of boost diodes operated in continuous conduction mode (additional losses, and electromagnetic interference (EMI) problems) are minimized, due to the operation in critical conduction mode. In addition, due to the Interleaving technique, the rectifer's features include the reduction in the input current ripple, the reduction in the output voltage ripple, the use of low stress devices, low volume for the EMI input filter, high input power factor (PF), and low total harmonic distortion (THD) In the input current, in compliance with the TEC61000-3-2 standards. The digital controller has been developed using a hardware description language (VHDL) and implemented using a XC2S200E-SpartanII-E/Xilinx FPGA device, performing a true critical conduction operation mode for four interleaved cells, and a closed-loop to provide the output voltage regulation, like as a pre-regulator rectifier. Experimental results are presented for a 2kW implemented prototype with four interleaved cells, 400V nominal output voltage and 220V(rms) nominal input voltage, in order to verify the feasibility and performance of the proposed digital control through the use of a FPGA device.
Resumo:
This paper is based on the development and experimental analysis of a DCM Boost interleaved converter suitable for application in traction systems of electrical vehicles pulled by electrical motors (Trolleybus), which are powered by urban DC or AC distribution networks. This front-end structure is capable of providing significant improvements in trolleybuses systems and in the urban distribution network costs, and efficiency. The architecture of proposed converter is composed by five boost power cells in interleaving connection, operating in discontinuous conduction mode. Furthermore, the converter can operate as AC-DC converter, or as DC-DC converter providing the proper DC output voltage range required by DC or AC adjustable speed drivers. Therefore, when supplied by single-phase AC distribution networks, and operating as AC-DC converter, it is capable to provide high power factor, reduced harmonic distortion in the input current, complying with the restrictions imposed by the IEC 61000-3-4 standards. The digital controller has been implemented using a low cost FPGA and developed totally using a hardware description language VHDL and fixed point arithmetic. Thus, two control strategies are evaluated considering the compliance with input current restrictions imposed by IEC 61000-3-4 standards, the regular PWM modulation and a current correction PWM modulation. In order to verify the feasibility and performance of the proposed system, experimental results from a 15 kW low power scale prototype are presented, operating in DC and AC conditions.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper presents a multi-cell single-phase high power factor boost rectifier in interleave connection, operating in critical conduction mode, employing a soft-switching technique, and controlled by Field Programmable Gate Array (FPGA). The soft-switching technique is based on zero-current-switching (ZCS) cells, providing ZC (zero-current) turn-on and ZCZV (zero-current-zero-voltage) turn-off for the active switches, and ZV (zero-vohage) turn-on and ZC (zero-current) turn-off for the boost diodes. The disadvantages related to reverse recovery effects of boost diodes operated in continuous conduction mode (additional losses, and electromagnetic interference (EMI) problems) are minimized, due to the operation in critical conduction mode. In addition, due to the interleaving technique, the rectifier's features include the reduction in the input current ripple, the reduction in the output voltage ripple, the use of low stress devices, low volume for the EMI input filter, high input power factor (PF), and low total harmonic distortion (THD) in the input current, in compliance with the IEC61000-3-2 standards. The digital controller has been developed using a hardware description language (VHDL) and implemented using a XC2S200E-SpartanII-E/Xilinx FPGA device, performing a true critical conduction operation mode for all interleaved cells, and a closed-loop to provide the output voltage regulation, like as a preregulator rectifier. Experimental results are presented for a implemented prototype with two and with four interleaved cells, 400V nominal output voltage and 220V(rms) nominal input voltage, in order to verify the feasibility and performance of the proposed digital control through the use of a FPGA device.
Resumo:
In this paper were investigated phase-shift control strategies applied to a four cells interleaved high input-power-factor pre-regulator boost rectifier, operating in critical conduction mode, using a non-dissipative commutation cells and frequency modulation. The digital control has been developed using a hardware description language (VHDL) and implemented using the XC2S200E-SpartanII-E/Xilinx FPGA, performing a true critical conduction operation mode for a generic number of interleaved cells. Experimental results are presented, in order to verify the feasibility and performance of the proposed digital control, through the use of a Xilinx FPGA device.
Resumo:
This paper presents the analysis and the design of a peak-current-controlled high-power-factor boost rectifier, with slope compensation, operating at constant frequency. The input current shaping is achieved, with continuous inductor current mode, with no multiplier to generate a current reference. The resulting overall circuitry is very simple, in comparison with the average-current-controlled boost rectifier. Experimental results are presented, taken from a laboratory prototype rated at 370 W and operating at 67 kHz. The measured power factor was 0.99, with a input current THD equal to 5.6%, for an input voltage THD equal to 2.26%.
Resumo:
This paper presents a new pre-regulator boost operating in the boundary area between the continuous and discontinuous conduction modes of the boost inductor current, where the switches and boost diode performing zero-current commutations during its turn-off, eliminating the disadvantages related to the reverse recovery losses and electromagnetic interference problems of the boost diode when operating in the continuous conduction mode. Additionally, the interleaving technique is applied in the power cell, providing a significant input current ripple reduction. It should be noticed that the main objective of this paper is to present a complete modeling for the converter operating in the critical conduction mode, allowing an improved design procedure for interleaved techniques with high input power factor, a complete dynamic analysis of the structure, and the possibility of implementing digital control techniques in closed loop.
Resumo:
This paper deals with results of a research and development (R&D) project in cooperation with Electric Power Distribution Company in São Paulo (Brazil) regarding the development and experimental analysis of a new concept of power drive system suitable for application in traction systems of electrical vehicles pulled by electrical motors, which can be powered by urban DC or AC distribution networks. The proposed front-end structure is composed by five boost power cells in interleaving connection, operating in discontinuous conduction mode as AC-DC converter, or as DC-DC converter, in order to provide the proper DC output voltage range required by DC or AC adjustable speed drivers. Therefore, when supplied by single-phase AC distribution networks, and operating as AC-DC converter, it is capable to provide high power factor, reduced harmonic distortion in the input current, complying with the restrictions imposed by the IEC 61000-3-4 standards resulting in significant improvements for the trolleybuses systems efficiency and for the urban distribution network costs. Considering the compliance with input current restrictions imposed by IEC 61000-3-4 standards, two digital control strategies were evaluated. The digital controller has been implemented using a low cost FPGA (XC3S200) and developed totally using a hardware description language VHDL and fixed point arithmetic. Experimental results from a 15 kW low power scale prototype operating in DC and AC conditions are presented, in order to verify the feasibility and performance of the proposed system. © 2009 IEEE.