954 resultados para Bochner tensor
Resumo:
Prefrontal impairments have been hypothesized to be most strongly associated with the cognitive and emotional dysfunction in depression. Recently, white matter microstructural abnormalities in prefrontal lobe have been reported in elderly patients with ma
Resumo:
According to the research results reported in the past decades, it is well acknowledged that face recognition is not a trivial task. With the development of electronic devices, we are gradually revealing the secret of object recognition in the primate's visual cortex. Therefore, it is time to reconsider face recognition by using biologically inspired features. In this paper, we represent face images by utilizing the C1 units, which correspond to complex cells in the visual cortex, and pool over S1 units by using a maximum operation to reserve only the maximum response of each local area of S1 units. The new representation is termed C1 Face. Because C1 Face is naturally a third-order tensor (or a three dimensional array), we propose three-way discriminative locality alignment (TWDLA), an extension of the discriminative locality alignment, which is a top-level discriminate manifold learning-based subspace learning algorithm. TWDLA has the following advantages: (1) it takes third-order tensors as input directly so the structure information can be well preserved; (2) it models the local geometry over every modality of the input tensors so the spatial relations of input tensors within a class can be preserved; (3) it maximizes the margin between a tensor and tensors from other classes over each modality so it performs well for recognition tasks and (4) it has no under sampling problem. Extensive experiments on YALE and FERET datasets show (1) the proposed C1Face representation can better represent face images than raw pixels and (2) TWDLA can duly preserve both the local geometry and the discriminative information over every modality for recognition.
Resumo:
The Landau parameters of Skyrme interactions in the spin and spin-isospin channels are studied using various Skyrme effective interactions with and without tensor correlations. We focus on the role of the tensor terms on the spin and spin-isospin instabilities that can occur in nuclear matter above saturation density. We point out that these instabilities are realized in nuclear matter at the critical density of about two times the saturation density for all the adopted parameter sets. The critical density is shown to be very much dependent not only on the choice of the Skyrme parameter set, but also on the inclusion of the tensor terms.
Resumo:
This paper presents a new region-based unified tensor level set model for image segmentation. This model introduces a three-order tensor to comprehensively depict features of pixels, e.g., gray value and the local geometrical features, such as orientation and gradient, and then, by defining a weighted distance, we generalized the representative region-based level set method from scalar to tensor. The proposed model has four main advantages compared with the traditional representative method as follows. First, involving the Gaussian filter bank, the model is robust against noise, particularly the salt-and pepper-type noise. Second, considering the local geometrical features, e. g., orientation and gradient, the model pays more attention to boundaries and makes the evolving curve stop more easily at the boundary location. Third, due to the unified tensor pixel representation representing the pixels, the model segments images more accurately and naturally. Fourth, based on a weighted distance definition, the model possesses the capacity to cope with data varying from scalar to vector, then to high-order tensor. We apply the proposed method to synthetic, medical, and natural images, and the result suggests that the proposed method is superior to the available representative region-based level set method.
Resumo:
Tensor analysis plays an important role in modern image and vision computing problems. Most of the existing tensor analysis approaches are based on the Frobenius norm, which makes them sensitive to outliers. In this paper, we propose L1-norm-based tensor analysis (TPCA-L1), which is robust to outliers. Experimental results upon face and other datasets demonstrate the advantages of the proposed approach.
Resumo:
General expressions used for transforming raw laser-induced fluorescence (LIF) intensity into the population and alignment parameters of a symmetric top molecule are derived by employing the density matrix approach. The molecular population and alignment are described by molecular state multipoles. The results are presented for a general excitation-detection geometry and then applied to some special geometries. In general cases, the LIF intensity is a complex function of the initial molecular state multipoles, the dynamic factors and the excitation-detection geometrical factors. It contains a population and 14 alignment multipoles. How to extract all initial state multipoles from the rotationally unresolved emission LIF intensity is discussed in detail.
Resumo:
Gohm, Rolf; Skeide, M., (2005) 'Constructing extensions of CP-maps via tensor dilations with rhe help of von Neumann modules', Infinite Dimensional Analysis, Quantum Probability and Related Topics 8(2) pp.291-305 RAE2008
Resumo:
Recent emergence of human connectome imaging has led to a high demand on angular and spatial resolutions for diffusion magnetic resonance imaging (MRI). While there have been significant growths in high angular resolution diffusion imaging, the improvement in spatial resolution is still limited due to a number of technical challenges, such as the low signal-to-noise ratio and high motion artifacts. As a result, the benefit of a high spatial resolution in the whole-brain connectome imaging has not been fully evaluated in vivo. In this brief report, the impact of spatial resolution was assessed in a newly acquired whole-brain three-dimensional diffusion tensor imaging data set with an isotropic spatial resolution of 0.85 mm. It was found that the delineation of short cortical association fibers is drastically improved as well as the definition of fiber pathway endings into the gray/white matter boundary-both of which will help construct a more accurate structural map of the human brain connectome.
Resumo:
In most diffusion tensor imaging (DTI) studies, images are acquired with either a partial-Fourier or a parallel partial-Fourier echo-planar imaging (EPI) sequence, in order to shorten the echo time and increase the signal-to-noise ratio (SNR). However, eddy currents induced by the diffusion-sensitizing gradients can often lead to a shift of the echo in k-space, resulting in three distinct types of artifacts in partial-Fourier DTI. Here, we present an improved DTI acquisition and reconstruction scheme, capable of generating high-quality and high-SNR DTI data without eddy current-induced artifacts. This new scheme consists of three components, respectively, addressing the three distinct types of artifacts. First, a k-space energy-anchored DTI sequence is designed to recover eddy current-induced signal loss (i.e., Type 1 artifact). Second, a multischeme partial-Fourier reconstruction is used to eliminate artificial signal elevation (i.e., Type 2 artifact) associated with the conventional partial-Fourier reconstruction. Third, a signal intensity correction is applied to remove artificial signal modulations due to eddy current-induced erroneous T2(∗) -weighting (i.e., Type 3 artifact). These systematic improvements will greatly increase the consistency and accuracy of DTI measurements, expanding the utility of DTI in translational applications where quantitative robustness is much needed.
Resumo:
A multitude of tasks that we perform on a daily basis require precise information about the orientation of our limbs with respect to the environment and the objects located within it. Recent studies have suggested that the inertia tensor, a physical property whose values are time- and co-ordinate-indepenclent, may be an important informational invariant used by the proprioceptive system to control the movements of our limbs (Pagano et al., Ecol. Psychol. 8 (1996) 43; Pagano and Turvey, Percept. Psychophys. 52 (1992) 617; Pagano and Turvey, J. Exp. Psychol. Hum. Percept. Perform. 21 (1995) 1070). We tested this hypothesis by recording the angular errors made by subjects when pointing to virtual targets in the dark. Close examination of the pointing errors made did not show any significant effects of the inertia tensor modifications on pointing accuracy. The kinematics of the pointing movements did not indicate that any on-line adjustments were being made to compensate for the inertia tensor changes. The implications of these findings with respect to the functioning of the proprioceptive system are discussed.