958 resultados para Block signals.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concept of moving block signallings (MBS) has been adopted in a few mass transit railway systems. When a dense queue of trains begins to move from a complete stop, the trains can re-start in very close succession under MBS. The feeding substations nearby are likely to be overloaded and the service will inevitably be disturbed unless substations of higher power rating are used. By introducing starting time delays among the trains or limiting the trains’ acceleration rate to a certain extent, the peak energy demand can be contained. However, delay is introduced and quality of service is degraded. An expert system approach is presented to provide a supervisory tool for the operators. As the knowledge base is vital for the quality of decisions to be made, the study focuses on its formulation with a balance between delay and peak power demand.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Signalling layout design is one of the keys to railway operations with fixed-block signalling system and it also carries direct effect on overall train efficiency and safety. Based on an analysis to system objectives, this paper presents an optimization model with two objectives in order to devise an efficient signalling layout scheme. Taking into account the present railway line design practices in China, the paper describes steps of the computer-based signalling layout optimisation with real-coded genetic algorithms. A computer-aided system, based on train movement simulator, has also been employed to assist the optimisation process. A case study on a practical railway line has been conducted to make comparisons between the proposed GA-based approach and the current practices. The results illustrate the improved performance of the proposed approach in reducing signal block joints and shortening minimum train service headway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract—The role of cardiopulmonary signals in the dynamics of wavefront aberrations in the eye has been examined. Synchronous measurement of the eye’s wavefront aberrations, cardiac function, blood pulse, and respiration signals were taken for a group of young, healthy subjects. Two focusing stimuli, three breathing patterns, as well as natural and cycloplegic eye conditions were examined. A set of tools, including time–frequency coherence and its metrics, has been proposed to acquire a detailed picture of the interactions of the cardiopulmonary system with the eye’s wavefront aberrations. The results showed that the coherence of the blood pulse and its harmonics with the eye’s aberrations was, on average, weak (0.4 ± 0.15), while the coherence of the respiration signal with eye’s aberrations was, on average, moderate (0.53 ± 0.14). It was also revealed that there were significant intervals during which high coherence occurred. On average, the coherence was high (>0.75) during 16% of the recorded time, for the blood pulse, and 34% of the time for the respiration signal. A statistically significant decrease in average coherence was noted for the eye’s aberrations with respiration in the case of fast controlled breathing (0.5 Hz). The coherence between the blood pulse and the defocus was significantly larger for the far target than for the near target condition. After cycloplegia, the coherence of defocus with the blood pulse significantly decreased, while this was not the case for the other aberrations. There was also a noticeable, but not statistically significant, increase in the coherence of the comatic term and respiration in that case. By using nonstationary measures of signal coherence, a more detailed picture of interactions between the cardiopulmonary signals and eye’s wavefront aberrations has emerged.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high peak power demand at substations will result under Moving Block Signalling (MBS) when a dense queue of trains begins to start from a complete stop at the same time in an electrified railway system. This may cause the power supply interruption and in turn affect the train service substantially. In a recent study, measures of Starting Time Delay (STD) and Acceleration Rate Limit (ARL) are the possible approaches to reduce the peak power demand on the supply system under MBS. Nevertheless, there is no well-defined relationship between the two measures and peak power demand reduction (PDR). In order to attain a lower peak demand at substations on different traffic conditions and system requirements, an expert system is one of the possible approaches to procure the appropriate use of peak demand reduction measures. The main objective of this paper is to study the effect of the train re-starting strategies on the power demand at substations and the time delay suffered by the trains with the aid of computer simulation. An expert system is a useful tool to select various adoptions of STD and ARL under different operational conditions and system requirements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents techniques which can be viewed as pre-processing step towards diagnosis of faults in a small size multi-cylinder diesel engine. Preliminary analysis of the acoustic emission (AE) signals is outlined, including time-frequency analysis, selection of optimum frequency band. Some results of applying mean field independent component analysis (MFICA) to separate the AE root mean square (RMS) signals are also outlined. The results on separation of RMS signals show this technique has the potential of increasing the probability to successfully identify the AE events associated with the various mechanical events.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a novel distributed coding protocol for multi-user cooperative networks. The proposed distributed coding protocol exploits the existing orthogonal space-time block codes to achieve higher diversity gain by repeating the code across time and space (available relay nodes). The achievable diversity gain depends on the number of relay nodes that can fully decode the signal from the source. These relay nodes then form space-time codes to cooperatively relay to the destination using number of time slots. However, the improved diversity gain is archived at the expense of the transmission rate. The design principles of the proposed space-time distributed code and the issues related to transmission rate and diversity trade off is discussed in detail. We show that the proposed distributed space-time coding protocol out performs existing distributed codes with a variable transmission rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present several new observations on the SMS4 block cipher, and discuss their cryptographic significance. The crucial observation is the existence of fixed points and also of simple linear relationships between the bits of the input and output words for each component of the round functions for some input words. This implies that the non-linear function T of SMS4 does not appear random and that the linear transformation provides poor diffusion. Furthermore, the branch number of the linear transformation in the key scheduling algorithm is shown to be less than optimal. The main security implication of these observations is that the round function is not always non-linear. Due to this linearity, it is possible to reduce the number of effective rounds of SMS4 by four. We also investigate the susceptibility of SMS4 to further cryptanalysis. Finally, we demonstrate a successful differential attack on a slightly modified variant of SMS4. These findings raise serious questions on the security provided by SMS4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The theory of nonlinear dyamic systems provides some new methods to handle complex systems. Chaos theory offers new concepts, algorithms and methods for processing, enhancing and analyzing the measured signals. In recent years, researchers are applying the concepts from this theory to bio-signal analysis. In this work, the complex dynamics of the bio-signals such as electrocardiogram (ECG) and electroencephalogram (EEG) are analyzed using the tools of nonlinear systems theory. In the modern industrialized countries every year several hundred thousands of people die due to sudden cardiac death. The Electrocardiogram (ECG) is an important biosignal representing the sum total of millions of cardiac cell depolarization potentials. It contains important insight into the state of health and nature of the disease afflicting the heart. Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart by the sympathetic and parasympathetic branches of the autonomic nervous system. Heart rate variability analysis is an important tool to observe the heart's ability to respond to normal regulatory impulses that affect its rhythm. A computerbased intelligent system for analysis of cardiac states is very useful in diagnostics and disease management. Like many bio-signals, HRV signals are non-linear in nature. Higher order spectral analysis (HOS) is known to be a good tool for the analysis of non-linear systems and provides good noise immunity. In this work, we studied the HOS of the HRV signals of normal heartbeat and four classes of arrhythmia. This thesis presents some general characteristics for each of these classes of HRV signals in the bispectrum and bicoherence plots. Several features were extracted from the HOS and subjected an Analysis of Variance (ANOVA) test. The results are very promising for cardiac arrhythmia classification with a number of features yielding a p-value < 0.02 in the ANOVA test. An automated intelligent system for the identification of cardiac health is very useful in healthcare technology. In this work, seven features were extracted from the heart rate signals using HOS and fed to a support vector machine (SVM) for classification. The performance evaluation protocol in this thesis uses 330 subjects consisting of five different kinds of cardiac disease conditions. The classifier achieved a sensitivity of 90% and a specificity of 89%. This system is ready to run on larger data sets. In EEG analysis, the search for hidden information for identification of seizures has a long history. Epilepsy is a pathological condition characterized by spontaneous and unforeseeable occurrence of seizures, during which the perception or behavior of patients is disturbed. An automatic early detection of the seizure onsets would help the patients and observers to take appropriate precautions. Various methods have been proposed to predict the onset of seizures based on EEG recordings. The use of nonlinear features motivated by the higher order spectra (HOS) has been reported to be a promising approach to differentiate between normal, background (pre-ictal) and epileptic EEG signals. In this work, these features are used to train both a Gaussian mixture model (GMM) classifier and a Support Vector Machine (SVM) classifier. Results show that the classifiers were able to achieve 93.11% and 92.67% classification accuracy, respectively, with selected HOS based features. About 2 hours of EEG recordings from 10 patients were used in this study. This thesis introduces unique bispectrum and bicoherence plots for various cardiac conditions and for normal, background and epileptic EEG signals. These plots reveal distinct patterns. The patterns are useful for visual interpretation by those without a deep understanding of spectral analysis such as medical practitioners. It includes original contributions in extracting features from HRV and EEG signals using HOS and entropy, in analyzing the statistical properties of such features on real data and in automated classification using these features with GMM and SVM classifiers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human knee acts as a sophisticated shock absorber during landing movements. The ability of the knee to perform this function in the real world is remarkable given that the context of the landing movement may vary widely between performances. For this reason, humans must be capable of rapidly adjusting the mechanical properties of the knee under impact load in order to satisfy many competing demands. However, the processes involved in regulating these properties in response to changing constraints remain poorly understood. In particular, the effects of muscle fatigue on knee function during step landing are yet to be fully explored. Fatigue of the knee muscles is significant for 2 reasons. First, it is thought to have detrimental effects on the ability of the knee to act as a shock absorber and is considered a risk factor for knee injury. Second, fatigue of knee muscles provides a unique opportunity to examine the mechanisms by which healthy individuals alter knee function. A review of the literature revealed that the effect of fatigue on knee function during landing has been assessed by comparing pre and postfatigue measurements, with fatigue induced by a voluntary exercise protocol. The information is limited by inconsistent results with key measures, such as knee stiffness, showing varying results following fatigue, including increased stiffness, decreased stiffness or failure to detect any change in some experiments. Further consideration of the literature questions the validity of the models used to induce and measure fatigue, as well as the pre-post study design, which may explain the lack of consensus in the results. These limitations cast doubt on the usefulness of the available information and identify a need to investigate alternative approaches. Based on the results of this review, the aims of this thesis were to: • evaluate the methodological procedures used in validation of a fatigue model • investigate the adaptation and regulation of post-impact knee mechanics during repeated step landings • use this new information to test the effects of fatigue on knee function during a step-landing task. To address the aims of the thesis, 3 related experiments were conducted that collected kinetic, kinematic and electromyographic data from 3 separate samples of healthy male participants. The methodologies involved optoelectronic motion capture (VICON), isokinetic dynamometry (System3 Pro, BIODEX) and wireless surface electromyography (Zerowire, Aurion, Italy). Fatigue indicators and knee function measures used in each experiment were derived from the data. Study 1 compared the validity and reliability of repetitive stepping and isokinetic contractions with respect to fatigue of the quadriceps and hamstrings. Fifteen participants performed 50 repetitions of each exercise twice in randomised order, over 4 sessions. Sessions were separated by a minimum of 1 week’s rest, to ensure full recovery. Validity and reliability depended on a complex interaction between the exercise protocol, the fatigue indicator, the individual and the muscle of interest. Nevertheless, differences between exercise protocols indicated that stepping was less effective in eliciting valid and reliable changes in peak power and spectral compression, compared with isokinetic exercise. A key finding was that fatigue progressed in a biphasic pattern during both exercises. The point separating the 2 phases, known as the transition point, demonstrated superior between-test reliability during the isokinetic protocol, compared with stepping. However, a correction factor should be used to accurately apply this technique to the study of fatigue during landing. Study 2 examined alterations in knee function during repeated landings, with a different sample (N =12) performing 60 consecutive step landing trials. Each landing trial was separated by 1-minute rest periods. The results provided new information in relation to the pre-post study design in the context of detecting adjustments in knee function during landing. First, participants significantly increased or decreased pre-impact muscle activity or post-impact mechanics despite environmental and task constraints remaining unchanged. This is the 1st study to demonstrate this effect in healthy individuals without external feedback on performance. Second, single-subject analysis was more effective in detecting alterations in knee function compared to group-level analysis. Finally, repeated landing trials did not reduce inter-trial variability of knee function in some participants, contrary to assumptions underpinning previous studies. The results of studies 1 and 2 were used to modify the design of Study 3 relative to previous research. These alterations included a modified isokinetic fatigue protocol, multiple pre-fatigue measurements and singlesubject analysis to detect fatigue-related changes in knee function. The study design incorporated new analytical approaches to investigate fatiguerelated alterations in knee function during landing. Participants (N = 16) were measured during multiple pre-fatigue baseline trial blocks prior to the fatigue model. A final block of landing trials was recorded once the participant met the operational fatigue definition that was identified in Study 1. The analysis revealed that the effects of fatigue in this context are heavily dependent on the compensatory response of the individual. A continuum of responses was observed within the sample for each knee function measure. Overall, preimpact preparation and post-impact mechanics of the knee were altered with highly individualised patterns. Moreover, participants used a range of active or passive pre-impact strategies to adapt post-impact mechanics in response to quadriceps fatigue. The unique patterns identified in the data represented an optimisation of knee function based on priorities of the individual. The findings of these studies explain the lack of consensus within the literature regarding the effects of fatigue on knee function during landing. First, functional fatigue protocols lack validity in inducing fatigue-related changes in mechanical output and spectral compression of surface electromyography (sEMG) signals, compared with isokinetic exercise. Second, fatigue-related changes in knee function during landing are confounded by inter-individual variation, which limits the sensitivity of group-level analysis. By addressing these limitations, the 3rd study demonstrated the efficacies of new experimental and analytical approaches to observe fatigue-related alterations in knee function during landing. Consequently, this thesis provides new perspectives into the effects of fatigue in knee function during landing. In conclusion: • The effects of fatigue on knee function during landing depend on the response of the individual, with considerable variation present between study participants, despite similar physical characteristics. • In healthy males, adaptation of pre-impact muscle activity and postimpact knee mechanics is unique to the individual and reflects their own optimisation of demands such as energy expenditure, joint stability, sensory information and loading of knee structures. • The results of these studies should guide future exploration of adaptations in knee function to fatigue. However, research in this area should continue with reduced emphasis on the directional response of the population and a greater focus on individual adaptations of knee function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For many decades correlation and power spectrum have been primary tools for digital signal processing applications in the biomedical area. The information contained in the power spectrum is essentially that of the autocorrelation sequence; which is sufficient for complete statistical descriptions of Gaussian signals of known means. However, there are practical situations where one needs to look beyond autocorrelation of a signal to extract information regarding deviation from Gaussianity and the presence of phase relations. Higher order spectra, also known as polyspectra, are spectral representations of higher order statistics, i.e. moments and cumulants of third order and beyond. HOS (higher order statistics or higher order spectra) can detect deviations from linearity, stationarity or Gaussianity in the signal. Most of the biomedical signals are non-linear, non-stationary and non-Gaussian in nature and therefore it can be more advantageous to analyze them with HOS compared to the use of second order correlations and power spectra. In this paper we have discussed the application of HOS for different bio-signals. HOS methods of analysis are explained using a typical heart rate variability (HRV) signal and applications to other signals are reviewed.