885 resultados para Biodiversity, traditional medecine, medicinal plants, Westafrica (Benin)
Resumo:
Advertisements for "Compound fluid extract of Sarsaparilla" on p. [4] of wrapper.
Resumo:
Issued in 6 parts.
Resumo:
Mode of access: Internet.
Resumo:
"To subscribers" (note concerning errata in v. 1): l leaf, inserted at end of v. 2.
Resumo:
No more published.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
This publication is largely compiled from and supersedes the following publications on medical plants by the late Alice Henkel, published from 1904 to 1913: Farmers' bulletin no. 188, Weeds used in medicine; Bureau of Plant Industry Bulletins no. 107, American root drugs; No. 139, American medicinal barks; and No. 219, American medicinal leaves and herbs; Department Bulletin no. 26, American medicinal flowers, fruits, and seeds.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
With the difficulty in treating recalcitrant infections and the growing resistance to antibiotics, new therapeutic modalities are becoming increasingly necessary. The interruption of bacterial quorum sensing (QS), or cell-cell communication is known to attenuate virulence, while limiting selective pressure toward resistance. This study initiates an ethnobotanically-directed search for QS inhibiting agents in south Florida medicinal plants. Fifty plants were screened for anti-QS activity using two biomonitor strains, Chromobacterium violaceum and Agrobacterium tumefaciens. Of these plants, six showed QS inhibition: Conocarpus erectus L. (Combretaceae), Chamaecyce hypericifolia (L.) Millsp. (Euphorbiaceae), Callistemon viminalis (Sol.ex Gaertn.) G. Don (Myrtaceae), Bucida burceras L. (Combretaceae), Tetrazygia bicolor (Mill.) Cogn. (Melastomataceae), and Quercus virginiana Mill. (Fagaceae). These plants were further examined for their effects on the QS system and virulence of Pseudomonas aeruginosa, an intractable opportunistic pathogen responsible for morbidity and mortality in the immunocompromised patient. C. erectus, B. buceras, and C. viminalis were found to significantly inhibit multiple virulence factors and biofilm formation in this organism. Each plant presented a distinct profile of effect on QS genes and signaling molecules, suggesting varying modes of action. Virulence attenuation was observed with marginal reduction of bacterial growth, suggesting quorum quenching mechanisms unrelated to static or cidal effects. Extracts of these plants were also investigated for their effects on P. aeruginosa killing of the nematode Caenorhabditis elegans. Results were evaluated in both toxin-based and infection-based assays with P. aeruginosa strains PA01 and PA14. Overall nematode mortality was reduced 50-90%. There was no indication of host toxicity, suggesting the potential for further development as anti-infectives. Using low-pressure chromatography and HPLC, two stereoisomeric ellagitannins, vescalagin and castalagin were isolated from an aqueous extract of C. erectus . Structures were confirmed via mass spectrometry and NMR spectroscopy. Both ellagitannins were shown to decrease signal production, QS gene expression, and virulence factor production in P. aeruginosa. This study introduces a potentially new therapeutic direction for the treatment of bacterial infections. In addition, this is the first report of vescalagin and castalagin being isolated from C. erectus, and the first report of ellagitannin activity on the QS system.
Resumo:
With the difficulty in treating recalcitrant infections and the growing resistance to antibiotics, new therapeutic modalities are becoming increasingly necessary. The interruption of bacterial quorum sensing (QS), or cell-cell communication is known to attenuate virulence, while limiting selective pressure toward resistance. This study initiates an ethnobotanically-directed search for QS inhibiting agents in south Florida medicinal plants. Fifty plants were screened for anti-QS activity using two biomonitor strains, Chromobacterium violaceum and Agrobacterium tumefaciens. Of these plants, six showed QS inhibition: Conocarpus erectus L. (Combretaceae), Chamaecyce hypericifolia (L.) Millsp. (Euphorbiaceae), Callistemon viminalis (Sol.ex Gaertn.) G. Don (Myrtaceae), Bucida burceras L. (Combretaceae), Tetrazygia bicolor (Mill.) Cogn. (Melastomataceae), and Quercus virginiana Mill. (Fagaceae). These plants were further examined for their effects on the QS system and virulence of Pseudomonas aeruginosa, an intractable opportunistic pathogen responsible for morbidity and mortality in the immunocompromised patient. C. erectus, B. buceras, and C. viminalis were found to significantly inhibit multiple virulence factors and biofilm formation in this organism. Each plant presented a distinct profile of effect on QS genes and signaling molecules, suggesting varying modes of action. Virulence attenuation was observed with marginal reduction of bacterial growth, suggesting quorum quenching mechanisms unrelated to static or cidal effects. Extracts of these plants were also investigated for their effects on P. aeruginosa killing of the nematode Caenorhabditis elegans. Results were evaluated in both toxin-based and infection-based assays with P. aeruginosa strains PA01 and PA14. Overall nematode mortality was reduced 50-90%. There was no indication of host toxicity, suggesting the potential for further development as anti-infectives. Using low-pressure chromatography and HPLC, two stereoisomeric ellagitannins, vescalagin and castalagin were isolated from an aqueous extract of C. erectus. Structures were confirmed via mass spectrometry and NMR spectroscopy. Both ellagitannins were shown to decrease signal production, QS gene expression, and virulence factor production in P. aeruginosa. This study introduces a potentially new therapeutic direction for the treatment of bacterial infections. In addition, this is the first report of vescalagin and castalagin being isolated from C. erectus, and the first report of ellagitannin activity on the QS system.