977 resultados para Binomial theorem.
Resumo:
El currículo de estadística en el sistema escolar sugiere desde la infancia un cambio metodológico de enseñanza hacia el desarrollo de los aspectos intuitivos de lo estocástico en situaciones de incertidumbre. El Taller tiene dos propósitos, presentar actividades de experimentos aleatorios con dispositivos manipulativos, algebraico y computacional para familiarizarse con la noción de distribución de probabilidad binomial. También, ilustrar que su enseñanza en la educación secundaria por medio de variadas representaciones proporciona una mayor potencia en el cálculo de probabilidades y la introducción de las ideas de parámetro, estadístico, simulación, variable aleatoria y aproximación.
Resumo:
Let $X$ be a real Banach space, $\omega:[0,+\infty)\to\R$ be an increasing continuous function such that $\omega(0)=0$ and $\omega(t+s)\leq\omega(t)+\omega(s)$ for all $t,s\in[0,+\infty)$. By the Osgood theorem, if $\int_{0}^1\frac{dt}{\omega(t)}=\infty$, then for any $(t_0,x_0)\in R\times X$ and any continuous map $f: R\times X\to X$ and such that $\|f(t,x)-f(t,y)\|\leq\omega(\|x-y\|)$ for all $t\in R$, $x,y\in X$, the Cauchy problem $\dot x(t)=f(t,x(t))$, $(t_0)=x_0$ has a unique solution in a neighborhood of $t_0$ . We prove that if $X$ has a complemented subspace with an unconditional Schauder basis and $\int_{0}^1\frac{dt}{\omega(t)}
Resumo:
Let $E$ be a nonnormable Frechet space, and let $E'$ be the space of all continuous linear functionals on $E$ in the strong topology. A continuous mapping $f : E' \to E'$ such that for any $t_0\in R$ and $x_0\in E'$, the Cauchy problem $\dot x= f(x)$, x(t_0) = x_0$ has no solutions is constructed.