868 resultados para Bifurcation de Hopf


Relevância:

20.00% 20.00%

Publicador:

Resumo:

解决平行平板流槽每次实验只能观测壁面培养细胞受一种剪应力作用的问题。作者在平行平板流槽的基础上,首次提出了一种改进后的流槽--二维平板分叉流槽。通过数值模拟,给出了流体作定常流动时,流速和壁面剪应力的分布。结果发现,利用这种二维平板分叉流槽可以研究壁面培养的细胞在不同大小剪应力作用下的力学行为。该研究结果为流槽的合理设计和使用,并分析剪应力空间分布对内皮细胞的影响有重要实际意义。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transient process of the thermocapillary convection was obtained for the large Pu floating half zone by using the method of three-dimensional and unsteady numerical simulation. The convection transits directly from steady and axisymmetric state to oscillatory flow for slender liquid bridge, and transits first from steady and axisymmetric convection to the steady and non-axisymmetric convection, then, secondly to the oscillatory convection for the fatter liquid bridge. This result implies that the volume of liquid bridge is not only a sensitive critical parameter for the onset of oscillation, but also relates to the new mechanism for the onset of instability in the floating half zone convection even in case of large Prandtl number fluid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

electrostatic torsional nano-electro-mechanical systems (NEMS) actuators is analyzed in the paper. The dependence of the critical tilting angle and voltage is investigated on the sizes of structure with the consideration of vdW effects. The pull-in phenomenon without the electrostatic torque is studied, and a critical pull-in gap is derived. A dimensionless equation of motion is presented, and the qualitative analysis of it shows that the equilibrium points of the corresponding autonomous system include center points, stable focus points, and unstable saddle points. The Hopf bifurcation points and fork bifurcation points also exist in the system. The phase portraits connecting these equilibrium points exhibit periodic orbits, heteroclinic orbits, as well as homoclinic orbits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Processes of the onset oscillation in the thermocapillaxy convection under the Earth's gravity are investigated by the numerical simulation and experiments in a floating half zone of large Prandtl number with different volume ratio. Both computational and experimental results show that the steady and axisymmetric convection turns to the oscillatory convection of m=1 for the slender liquid bridge, and to the oscillatory convection before a steady and 3D asymmetric state for the case of a fat liquid bridge. It implies that, there are two critical Marangoni numbers related, respectively, to these two bifurcation transitions for the fat liquid bridge. The computational results agree with the results of ground-based experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamic behaviour for nanoscale electrostatic actuators is studied. A two Parameter mass-spring model is shown to exhibit a bifurcation from the case excluding an equilibrium point to the case including two equilibrium points as the geometrical dimensions of the device are altered. Stability analysis shows that one is a stable Hopf bifurcation point and the other is an unstable saddle point. In addition, we plot the diagram phases, which have periodic orbits around the Hopf point and a homoclinic orbit passing though the unstable saddle point.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cellular cell pattern evolution of cylindrically-diverging detonations is numerically simulated successfully by solving two-dimensional Euler equations implemented with an improved two-step chemical kinetic model. From the simulation, three cell bifurcation modes are observed during the evolution and referred to as concave front focusing, kinked and wrinkled wave front instability, and self-merging of cellular cells. Numerical research demonstrates that the wave front expansion resulted from detonation front diverging plays a major role in the cellular cell bifurcation, which can disturb the nonlinearly self-sustained mechanism of detonations and finally lead to cell bifurcations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The piezoelastodynamic field equations are solved to determine the crack velocity at bifurcation for poled ferroelectric materials where the applied electrical field and mechanical stress can be varied. The underlying physical mechanism, however, may not correspond to that assumed in the analytical model. Bifurcation has been related to the occurrence of a pair of maximum circumferential stress oriented symmetrically about the moving crack path. The velocity at which this behavior prevails has been referred to as the limiting crack speed. Unlike the classical approach, bifurcation will be identified with finite distances ahead of a moving crack. Nucleation of microcracks can thus be modelled in a single formulation. This can be accomplished by using the energy density function where fracture initiation is identified with dominance of dilatation in relation to distortion. Poled ferroelectric materials are selected for this study because the microstructure effects for this class of materials can be readily reflected by the elastic, piezoelectic and dielectric permittivity constants at the macroscopic scale. Existing test data could also shed light on the trend of the analytical predictions. Numerical results are thus computed for PZT-4 and compared with those for PZT-6B in an effort to show whether the branching behavior would be affected by the difference in the material microstructures. A range of crack bifurcation speed upsilon(b) is found for different r/a and E/sigma ratios. Here, r and a stand for the radial distance and half crack length, respectively, while E and a for the electric field and mechanical stress. For PZT-6B with upsilon(b) in the range 100-1700 m/s, the bifurcation angles varied from +/-6degrees to +/-39degrees. This corresponds to E/sigma of -0.072 to 0.024 V m/N. At the same distance r/a = 0.1, PZT-4 gives upsilon(b) values of 1100-2100 m/s; bifurcation angles of +/-15degrees to +/-49degrees; and E/sigma of -0.056 to 0.059 V m/N. In general, the bifurcation angles +/-theta(0) are found to decrease with decreasing crack velocity as the distance r/a is increased. Relatively speaking, the speed upsilon(b) and angles +/-theta(0) for PZT-4 are much greater than those for PZT-6B. This may be attributed to the high electromechanical coupling effect of PZT-4. Using upsilon(b)(0) as a base reference, an equality relation upsilon(b)(-) < upsilon(b)(0) < upsilon(b)(+) can be established. The superscripts -, 0 and + refer, respectively, to negative, zero and positive electric field. This is reminiscent of the enhancement and retardation of crack growth behavior due to change in poling direction. Bifurcation characteristics are found to be somewhat erratic when r/a approaches the range 10(-2)-10(-1) where the kinetic energy densities would fluctuate and then rise as the distance from the moving crack is increased. This is an artifact introduced by the far away condition of non-vanishing particle velocity. A finite kinetic energy density prevails at infinity unless it is made to vanish in the boundary value problem. Future works are recommended to further clarify the physical mechanism(s) associated with bifurcation by means of analysis and experiment. Damage at the microscopic level needs to be addressed since it has been known to affect the macrocrack speeds and bifurcation characteristics. (C) 2002 Published by Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flow fields around a rotating circular cylinder in a uniform stream are computed using a low dimensional Galerkin method. Results show that the formation of a Fopple vortex pair behind a stationary circular cylinder is caused by the structural instability in the vicinity of the saddle located at the rear of the cylinder. For rotating cylinder a bifurcation diagram with the consideration of two parameters, Reynolds number Re and rotation parameter a, is built by a kinematic analysis of the steady flow fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The steady bifurcation flows in a spherical gap (gap ratio sigma=0.18) with rotating inner and stationary outer spheres are simulated numerically for Re(c1)less than or equal to Re less than or equal to 1 500 by solving steady axisymmetric incompressible Navier-Stokes equations using a finite difference method. The simulation shows that there exist two steady stable flows with 1 or 2 vortices per hemisphere for 775 less than or equal to Re less than or equal to 1 220 and three steady stable flows with 0, 1, or 2 vortices for 1 220depends mainly on the acceleratio n, but that of one-vortex flow also depends on the perturbation breaking the equatorial symmetry. The mechanism of development of a saddle point in the meridional plane at higher Re number and its role in the formation of two-vortex flow are analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The various patterns (shear banding, surface wrinkling and necking) of material bifurcation in plane sheet under tension are investigated in this paper by means of a numerical method. It is found that numerical analysis can provide better ground for searching for the lowest critical loads. The inhomogeneity caused by void damage and the nonuniformity in the stress distribution across sheet thickness are proved to have detrimental effects on the material bifurcation. Nevertheless, material stability can be promoted by any means of depressing void damage or alleviating stress, even locally across the thickness. Besides, the peculiar behaviour of material bifurcation under slight biaxiality state is demonstrated. Copyright (C) 1996 Elsevier Science Ltd

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dilatational plastic constitutive equation presented in this paper is proved to be in a form of generality. Based on this equation, the constitutive behaviour of materials at the moment of bifurcation is demonstrated to follow a loading path with the response as "soft" as possible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An overview on the onset of thermocapillary oscillatory convection in a floating half zone is provided, and it is a typical subject in the microgravity sciences related to the space materials science, especially the floating zone processing, and also to the microgravity fluid physics. The main interests are focused around the process for onset of oscillatory thermocapillary convection, which is known also as the bifurcation transition from quasi-steady convection to oscillatory convection. The onset of oscillation depends on a set of critical parameters, such as the Marangoni number, Prandtl number, geometrical parameters, and heat transfer parameters. Recent studies show that, there exists the bifurcation transition from steady and axial symmetric convection to the steady and axial non-symmetric convection before the onset of oscillation in cases of small Prandtl number fluids and in cases of larger Prandtl number fluids of fat liquid bridge with small aspect ratio. The transition process is a strong non-linear process because the velocity deviation has the same order of magnitude as that of an average flow after the onset of oscillation, and unsteady 3-D numerical simulation is suitable to do in depth analysis on strong non-linear process, and leads generally to a better comparison with the experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bifurcation and nonlinear stability properties of the Meinhardt-Gierer model for biochemical pattern formation are studied. Analyses are carried out in parameter ranges where the linearized system about a trivial solution loses stability through one to three eigenfunctions, yielding both time independent and periodic final states. Solution branches are obtained that exhibit secondary bifurcation and imperfection sensitivity and that appear, disappear, or detach themselves from other branches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of the existence and stability of periodic solutions of infinite-lag integra-differential equations is considered. Specifically, the integrals involved are of the convolution type with the dependent variable being integrated over the range (- ∞,t), as occur in models of population growth. It is shown that Hopf bifurcation of periodic solutions from a steady state can occur, when a pair of eigenvalues crosses the imaginary axis. Also considered is the existence of traveling wave solutions of a model population equation allowing spatial diffusion in addition to the usual temporal variation. Lastly, the stability of the periodic solutions resulting from Hopf bifurcation is determined with aid of a Floquet theory.

The first chapter is devoted to linear integro-differential equations with constant coefficients utilizing the method of semi-groups of operators. The second chapter analyzes the Hopf bifurcation providing an existence theorem. Also, the two-timing perturbation procedure is applied to construct the periodic solutions. The third chapter uses two-timing to obtain traveling wave solutions of the diffusive model, as well as providing an existence theorem. The fourth chapter develops a Floquet theory for linear integro-differential equations with periodic coefficients again using the semi-group approach. The fifth chapter gives sufficient conditions for the stability or instability of a periodic solution in terms of the linearization of the equations. These results are then applied to the Hopf bifurcation problem and to a certain population equation modeling periodically fluctuating environments to deduce the stability of the corresponding periodic solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

I. Existence and Structure of Bifurcation Branches

The problem of bifurcation is formulated as an operator equation in a Banach space, depending on relevant control parameters, say of the form G(u,λ) = 0. If dimN(G_u(u_O,λ_O)) = m the method of Lyapunov-Schmidt reduces the problem to the solution of m algebraic equations. The possible structure of these equations and the various types of solution behaviour are discussed. The equations are normally derived under the assumption that G^O_λεR(G^O_u). It is shown, however, that if G^O_λεR(G^O_u) then bifurcation still may occur and the local structure of such branches is determined. A new and compact proof of the existence of multiple bifurcation is derived. The linearized stability near simple bifurcation and "normal" limit points is then indicated.

II. Constructive Techniques for the Generation of Solution Branches

A method is described in which the dependence of the solution arc on a naturally occurring parameter is replaced by the dependence on a form of pseudo-arclength. This results in continuation procedures through regular and "normal" limit points. In the neighborhood of bifurcation points, however, the associated linear operator is nearly singular causing difficulty in the convergence of continuation methods. A study of the approach to singularity of this operator yields convergence proofs for an iterative method for determining the solution arc in the neighborhood of a simple bifurcation point. As a result of these considerations, a new constructive proof of bifurcation is determined.