957 resultados para Beijing (China)--Maps
Resumo:
Personalised social matching systems can be seen as recommender systems that recommend people to others in the social networks. However, with the rapid growth of users in social networks and the information that a social matching system requires about the users, recommender system techniques have become insufficiently adept at matching users in social networks. This paper presents a hybrid social matching system that takes advantage of both collaborative and content-based concepts of recommendation. The clustering technique is used to reduce the number of users that the matching system needs to consider and to overcome other problems from which social matching systems suffer, such as cold start problem due to the absence of implicit information about a new user. The proposed system has been evaluated on a dataset obtained from an online dating website. Empirical analysis shows that accuracy of the matching process is increased, using both user information (explicit data) and user behavior (implicit data).
Resumo:
In this paper, we describe a voting mechanism for accurate named entity (NE) translation in English–Chinese question answering (QA). This mechanism involves translations from three different sources: machine translation,online encyclopaedia, and web documents. The translation with the highest number of votes is selected. We evaluated this approach using test collection, topics and assessment results from the NTCIR-8 evaluation forum. This mechanism achieved 95% accuracy in NEs translation and 0.3756 MAP in English–Chinese cross-lingual information retrieval of QA.
Resumo:
This paper proposes an innovative instance similarity based evaluation metric that reduces the search map for clustering to be performed. An aggregate global score is calculated for each instance using the novel idea of Fibonacci series. The use of Fibonacci numbers is able to separate the instances effectively and, in hence, the intra-cluster similarity is increased and the inter-cluster similarity is decreased during clustering. The proposed FIBCLUS algorithm is able to handle datasets with numerical, categorical and a mix of both types of attributes. Results obtained with FIBCLUS are compared with the results of existing algorithms such as k-means, x-means expected maximization and hierarchical algorithms that are widely used to cluster numeric, categorical and mix data types. Empirical analysis shows that FIBCLUS is able to produce better clustering solutions in terms of entropy, purity and F-score in comparison to the above described existing algorithms.
Resumo:
Most recommendation methods employ item-item similarity measures or use ratings data to generate recommendations. These methods use traditional two dimensional models to find inter relationships between alike users and products. This paper proposes a novel recommendation method using the multi-dimensional model, tensor, to group similar users based on common search behaviour, and then finding associations within such groups for making effective inter group recommendations. Web log data is multi-dimensional data. Unlike vector based methods, tensors have the ability to highly correlate and find latent relationships between such similar instances, consisting of users and searches. Non redundant rules from such associations of user-searches are then used for making recommendations to the users.
Resumo:
The creative cities literature gives an emphasis to developing cultural amenity and creative clusters in inner city areas, in order to attract both international visitors and what Richard Florida termed the “creative class”. But many creative workers live in outer urban zones (suburbs). How do creative industries policies meet their needs? This paper reports on a three-year study supported by the Australian Research Council into creative workforce in Australian suburbs in the cities of Melbourne and Brisbane.
Resumo:
The factors affecting driving behaviors are various and interact simultaneously. Therefore, study of their correlations affecting on driving behaviors is of interest. This paper reports a questionnaire survey in China, focusing on the effect of Big-Five factors on speeding, drink driving, and distracted driving while Akers' social learning theory and Homel's deterrence theory were applied. The results showed that personalities had significant effect on speeding and drink driving; social factors had significant effect on speeding and distracted driving; deterrence had significant effect on speeding and drink driving; however, social learning theory did not contribute to drink driving; deterrence did not affect distracted driving. The results were discussed along with the limitation of this study.
Resumo:
Modelling activities in crowded scenes is very challenging as object tracking is not robust in complicated scenes and optical flow does not capture long range motion. We propose a novel approach to analyse activities in crowded scenes using a “bag of particle trajectories”. Particle trajectories are extracted from foreground regions within short video clips using particle video, which estimates long range motion in contrast to optical flow which is only concerned with inter-frame motion. Our applications include temporal video segmentation and anomaly detection, and we perform our evaluation on several real-world datasets containing complicated scenes. We show that our approaches achieve state-of-the-art performance for both tasks.
Resumo:
The ability to detect unusual events in surviellance footage as they happen is a highly desireable feature for a surveillance system. However, this problem remains challenging in crowded scenes due to occlusions and the clustering of people. In this paper, we propose using the Distributed Behavior Model (DBM), which has been widely used in computer graphics, for video event detection. Our approach does not rely on object tracking, and is robust to camera movements. We use sparse coding for classification, and test our approach on various datasets. Our proposed approach outperforms a state-of-the-art work which uses the social force model and Latent Dirichlet Allocation.
Resumo:
Recognizing the impact of reconfiguration on the QoS of running systems is especially necessary for choosing an appropriate approach to dealing with dynamic evolution of mission-critical or non-stop business systems. The rationale is that the impaired QoS caused by inappropriate use of dynamic approaches is unacceptable for such running systems. To predict in advance the impact, the challenge is two-fold. First, a unified benchmark is necessary to expose QoS problems of existing dynamic approaches. Second, an abstract representation is necessary to provide a basis for modeling and comparing the QoS of existing and new dynamic reconfiguration approaches. Our previous work [8] has successfully evaluated the QoS assurance capabilities of existing dynamic approaches and provided guidance of appropriate use of particular approaches. This paper reinvestigates our evaluations, extending them into concurrent and parallel environments by abstracting hardware and software conditions to design an evaluation context. We report the new evaluation results and conclude with updated impact analysis and guidance.
Resumo:
Generic sentiment lexicons have been widely used for sentiment analysis these days. However, manually constructing sentiment lexicons is very time-consuming and it may not be feasible for certain application domains where annotation expertise is not available. One contribution of this paper is the development of a statistical learning based computational method for the automatic construction of domain-specific sentiment lexicons to enhance cross-domain sentiment analysis. Our initial experiments show that the proposed methodology can automatically generate domain-specific sentiment lexicons which contribute to improve the effectiveness of opinion retrieval at the document level. Another contribution of our work is that we show the feasibility of applying the sentiment metric derived based on the automatically constructed sentiment lexicons to predict product sales of certain product categories. Our research contributes to the development of more effective sentiment analysis system to extract business intelligence from numerous opinionated expressions posted to the Web
Resumo:
The Monte Carlo DICOM Tool-Kit (MCDTK) is a software suite designed for treatment plan dose verification, using the BEAMnrc and DOSXYZnrc Monte Carlo codes. MCDTK converts DICOM-format treatment plan information into Monte Carlo input files and compares the results of Monte Carlo treatment simulations with conventional treatment planning dose calculations. In this study, a treatment is planned using a commercial treatment planning system, delivered to a pelvis phantom containing ten thermoluminescent dosimeters and simulated using BEAMnrc and DOSXYZnrc using inputs derived from MCDTK. The dosimetric accuracy of the Monte Carlo data is then evaluated via comparisons with the dose distribution obtained from the treatment planning system as well as the in-phantom point dose measurements. The simulated beam arrangement produced by MCDTK is found to be in geometric agreement with the planned treatment. An isodose display generated from the Monte Carlo data by MCDTK shows general agreement with the isodose display obtained from the treatment planning system, except for small regions around density heterogeneities in the phantom, where the pencil-beam dose calculation performed by the treatment planning systemis likely to be less accurate. All point dose measurements agree with the Monte Carlo data obtained using MCDTK, within confidence limits, and all except one of these point dose measurements show closer agreement with theMonte Carlo data than with the doses calculated by the treatment planning system. This study provides a simple demonstration of the geometric and dosimetric accuracy ofMonte Carlo simulations based on information from MCDTK.
Resumo:
The presence of air and bone interfaces makes the dose distribution for head and neck cancer treatments difficult to accurately predict. This study compared planning system dose calculations using the collapsed-cone convolution algorithm with EGSnrcMonte Carlo simulation results obtained using the Monte Carlo DICOMToolKit software, for one oropharynx, two paranasal sinus and three nodal treatment plans. The difference between median doses obtained from the treatment planning and Monte Carlo calculations was found to be greatest in two bilateral treatments: 4.8%for a retropharyngeal node irradiation and 6.7% for an ethmoid paranasal sinus treatment. These deviations in median dose were smaller for two unilateral treatments: 0.8% for an infraclavicular node irradiation and 2.8% for a cervical node treatment. Examination of isodose distributions indicated that the largest deviations between Monte Carlo simulation and collapsed-cone convolution calculations were seen in the bilateral treatments, where the increase in calculated dose beyond air cavities was most significant.