930 resultados para Balancing and Optimization of lines
Resumo:
Globalization has increased the pressure on organizations and companies to operate in the most efficient and economic way. This tendency promotes that companies concentrate more and more on their core businesses, outsource less profitable departments and services to reduce costs. By contrast to earlier times, companies are highly specialized and have a low real net output ratio. For being able to provide the consumers with the right products, those companies have to collaborate with other suppliers and form large supply chains. An effect of large supply chains is the deficiency of high stocks and stockholding costs. This fact has lead to the rapid spread of Just-in-Time logistic concepts aimed minimizing stock by simultaneous high availability of products. Those concurring goals, minimizing stock by simultaneous high product availability, claim for high availability of the production systems in the way that an incoming order can immediately processed. Besides of design aspects and the quality of the production system, maintenance has a strong impact on production system availability. In the last decades, there has been many attempts to create maintenance models for availability optimization. Most of them concentrated on the availability aspect only without incorporating further aspects as logistics and profitability of the overall system. However, production system operator’s main intention is to optimize the profitability of the production system and not the availability of the production system. Thus, classic models, limited to represent and optimize maintenance strategies under the light of availability, fail. A novel approach, incorporating all financial impacting processes of and around a production system, is needed. The proposed model is subdivided into three parts, maintenance module, production module and connection module. This subdivision provides easy maintainability and simple extendability. Within those modules, all aspect of production process are modeled. Main part of the work lies in the extended maintenance and failure module that offers a representation of different maintenance strategies but also incorporates the effect of over-maintaining and failed maintenance (maintenance induced failures). Order release and seizing of the production system are modeled in the production part. Due to computational power limitation, it was not possible to run the simulation and the optimization with the fully developed production model. Thus, the production model was reduced to a black-box without higher degree of details.
Resumo:
The thesis, developed in collaboration between the team Systems and Equipment for Energy and Environment of Bologna University and Chalmers University of Technology in Goteborg, aims to study the benefits resulting from the adoption of a thermal storage system for marine application. To that purpose a chruis ship has been considered. To reach the purpose has been used the software EGO (Energy Greed Optimization) developed by University of Bologna.
Resumo:
This thesis will present strategies for the use of plug-in electric vehicles on smart and microgrids. MATLAB is used as the design tool for all models and simulations. First, a scenario will be explored using the dispatchable loads of electric vehicles to stabilize a microgrid with a high penetration of renewable power generation. Grid components for a microgrid with 50% photovoltaic solar production will be sized through an optimization routine to maintain storage system, load, and vehicle states over a 24-hour period. The findings of this portion are that the dispatchable loads can be used to guard against unpredictable losses in renewable generation output. Second, the use of distributed control strategies for the charging of electric vehicles utilizing an agent-based approach on a smart grid will be studied. The vehicles are regarded as additional loads to a primary forecasted load and use information transfer with the grid to make their charging decisions. Three lightweight control strategies and their effects on the power grid will be presented. The findings are that the charging behavior and peak loads on the grid can be reduced through the use of distributed control strategies.
Resumo:
In this paper, a computer-aided diagnostic (CAD) system for the classification of hepatic lesions from computed tomography (CT) images is presented. Regions of interest (ROIs) taken from nonenhanced CT images of normal liver, hepatic cysts, hemangiomas, and hepatocellular carcinomas have been used as input to the system. The proposed system consists of two modules: the feature extraction and the classification modules. The feature extraction module calculates the average gray level and 48 texture characteristics, which are derived from the spatial gray-level co-occurrence matrices, obtained from the ROIs. The classifier module consists of three sequentially placed feed-forward neural networks (NNs). The first NN classifies into normal or pathological liver regions. The pathological liver regions are characterized by the second NN as cyst or "other disease." The third NN classifies "other disease" into hemangioma or hepatocellular carcinoma. Three feature selection techniques have been applied to each individual NN: the sequential forward selection, the sequential floating forward selection, and a genetic algorithm for feature selection. The comparative study of the above dimensionality reduction methods shows that genetic algorithms result in lower dimension feature vectors and improved classification performance.
Resumo:
Treatment of metastatic melanoma with tumor reactive T cells (adoptive T cell therapy, ACT) is a promising approach associated with a high clinical response rate. However, further optimization of this treatment modality is required to increase the clinical response after this therapy. ACT in melanoma involves an initial phase (pre-REP) of tumor-infiltrating lymphocyte (TIL) expansion ex vivo from tumor isolates followed by a second phase, “rapid expansion protocol” (REP) generating the billions of cells used as the TIL infusion product. The main question addressed in this thesis was how the currently used REP affected the responsiveness of the CD8+ T cells to defined melanoma antigens. We hypothesized that the REP drives the TIL to further differentiate and become hyporesponsive to antigen restimulation, therefore, proper cytokine treatment or other ways to expand TIL is required to improve upon this outcome. We evaluated the response of CD8+ TIL to melanoma antigen restimulation using MART-1 peptide-pulsed mature DC in vitro. Post-REP TILs were mostly hypo-responsive with poor proliferation and higher apoptosis. Phenotypic analysis revealed that the expression of CD28 was significantly reduced in post-REP TILs. By sorting experiment and microarray analysis, we confirmed that the few CD28+ post-REP TILs had superior survival capacity and proliferated after restimulation. We then went on to investigate methods to maintain CD28 expression during the REP and improve TIL responsiveness. Firstly, IL-15 and IL-21 were found to synergize in maintaining TIL CD28 expression and antigenic responsiveness during REP. Secondly, we found IL-15 was superior as compared to IL-2 in supporting the long-term expansion of antigen-specific CD8+ TIL after restimulation. These results suggest that current expansion protocols used for adoptive T-cell therapy in melanoma yield largely hyporesponsive products containing CD8+ T cells unable to respond in vivo to re-stimulation with antigen. A modification of our current approaches by using IL-15+IL-21 as supporting cytokines in the REP, or/and administration of IL-15 instead of IL-2 after TIL infusion, may enhance the anti-tumor efficacy and long-term persistence of infused T cells in vivo.
Resumo:
Fluorides are used in dental care due to their beneficial effect in tooth enamel de-/remineralization cycles. To achieve a desired constant supply of soluble fluorides in the oral cavity, different approaches have been followed. Here we present results on the preparation of CaF2 particles and their characterization with respect to a potential application as enamel associated fluoride releasing reservoirs. CaF2 particles were synthesized by precipitation from soluble NaF and CaCl2 salt solutions of defined concentrations and their morphology analyzed by scanning electron microscopy. CaF2 particles with defined sizes and shapes could be synthesized by adjusting the concentrations of the precursor salt solutions. Such particles interacted with enamel surfaces when applied at fluoride concentrations correlating to typical dental care products. Fluoride release from the synthesized CaF2 particles was observed to be largely influenced by the concentration of phosphate in the solution. Physiological solutions with phosphate concentration similar to saliva (3.5 mM) reduced the fluoride release from pure CaF2 particles by a factor of 10-20 × as compared to phosphate free buffer solutions. Fluoride release was even lower in human saliva. The fluoride release could be increased by the addition of phosphate in substoichiometric amounts during CaF2 particle synthesis. The presented results demonstrate that the morphology and fluoride release characteristics of CaF2 particles can be tuned and provide evidence of the suitability of synthetic CaF2 particles as enamel associated fluoride reservoirs.
Resumo:
We report a novel strategy for the regulation of charge transport through single molecule junctions via the combination of external stimuli of electrode potential, internal modulation of molecular structures, and optimization of anchoring groups. We have designed redox-active benzodifuran (BDF) compounds as functional electronic units to fabricate metal–molecule–metal (m–M–m) junction devices by scanning tunneling microscopy (STM) and mechanically controllable break junctions (MCBJ). The conductance of thiol-terminated BDF can be tuned by changing the electrode potentials showing clearly an off/on/off single molecule redox switching effect. To optimize the response, a BDF molecule tailored with carbodithioate (−CS2–) anchoring groups was synthesized. Our studies show that replacement of thiol by carbodithioate not only enhances the junction conductance but also substantially improves the switching effect by enhancing the on/off ratio from 2.5 to 8.
Resumo:
The influence of respiratory motion on patient anatomy poses a challenge to accurate radiation therapy, especially in lung cancer treatment. Modern radiation therapy planning uses models of tumor respiratory motion to account for target motion in targeting. The tumor motion model can be verified on a per-treatment session basis with four-dimensional cone-beam computed tomography (4D-CBCT), which acquires an image set of the dynamic target throughout the respiratory cycle during the therapy session. 4D-CBCT is undersampled if the scan time is too short. However, short scan time is desirable in clinical practice to reduce patient setup time. This dissertation presents the design and optimization of 4D-CBCT to reduce the impact of undersampling artifacts with short scan times. This work measures the impact of undersampling artifacts on the accuracy of target motion measurement under different sampling conditions and for various object sizes and motions. The results provide a minimum scan time such that the target tracking error is less than a specified tolerance. This work also presents new image reconstruction algorithms for reducing undersampling artifacts in undersampled datasets by taking advantage of the assumption that the relevant motion of interest is contained within a volume-of-interest (VOI). It is shown that the VOI-based reconstruction provides more accurate image intensity than standard reconstruction. The VOI-based reconstruction produced 43% fewer least-squares error inside the VOI and 84% fewer error throughout the image in a study designed to simulate target motion. The VOI-based reconstruction approach can reduce acquisition time and improve image quality in 4D-CBCT.
Resumo:
Nowadays computing platforms consist of a very large number of components that require to be supplied with diferent voltage levels and power requirements. Even a very small platform, like a handheld computer, may contain more than twenty diferent loads and voltage regulators. The power delivery designers of these systems are required to provide, in a very short time, the right power architecture that optimizes the performance, meets electrical specifications plus cost and size targets. The appropriate selection of the architecture and converters directly defines the performance of a given solution. Therefore, the designer needs to be able to evaluate a significant number of options in order to know with good certainty whether the selected solutions meet the size, energy eficiency and cost targets. The design dificulties of selecting the right solution arise due to the wide range of power conversion products provided by diferent manufacturers. These products range from discrete components (to build converters) to complete power conversion modules that employ diferent manufacturing technologies. Consequently, in most cases it is not possible to analyze all the alternatives (combinations of power architectures and converters) that can be built. The designer has to select a limited number of converters in order to simplify the analysis. In this thesis, in order to overcome the mentioned dificulties, a new design methodology for power supply systems is proposed. This methodology integrates evolutionary computation techniques in order to make possible analyzing a large number of possibilities. This exhaustive analysis helps the designer to quickly define a set of feasible solutions and select the best trade-off in performance according to each application. The proposed approach consists of two key steps, one for the automatic generation of architectures and other for the optimized selection of components. In this thesis are detailed the implementation of these two steps. The usefulness of the methodology is corroborated by contrasting the results using real problems and experiments designed to test the limits of the algorithms.
Resumo:
The research work that here is summarized, it is classed on the area of dynamics and measures of railway safety, specifically in the study of the influence of the cross wind on the high-speed trains as well as the study of new mitigation measures like wind breaking structures or wind fences, with optimized shapes. The work has been developed in the Research Center in Rail Technology (CITEF), and supported by the Universidad Politécnica de Madrid, Spain.
Resumo:
The propagation losses (PL) of lithium niobate optical planar waveguides fabricated by swift heavy-ion irradiation (SHI), an alternative to conventional ion implantation, have been investigated and optimized. For waveguide fabrication, congruently melting LiNbO3 substrates were irradiated with F ions at 20 MeV or 30 MeV and fluences in the range 1013–1014 cm−2. The influence of the temperature and time of post-irradiation annealing treatments has been systematically studied. Optimum propagation losses lower than 0.5 dB/cm have been obtained for both TE and TM modes, after a two-stage annealing treatment at 350 and 375∘C. Possible loss mechanisms are discussed.
Resumo:
Competitive abstract machines for Prolog are usually large, intricate, and incorpórate sophisticated optimizations. This makes them difñcult to code, optimize, and, especially, maintain and extend. This is partly due to the fact that efñciency considerations make it necessary to use low-level languages in their implementation. Writing the abstract machine (and ancillary code) in a higher-level language can help harness this inherent complexity. In this paper we show how the semantics of basic components of an efficient virtual machine for Prolog can be described using (a variant of) Prolog which retains much of its semantics. These descriptions are then compiled to C and assembled to build a complete bytecode emulator. Thanks to the high level of the language used and its closeness to Prolog the abstract machine descriptions can be manipulated using standard Prolog compilation and optimization techniques with relative ease. We also show how, by applying program transformations selectively, we obtain abstract machine implementations whose performance can match and even exceed that of highly-tuned, hand-crafted emulators.
Resumo:
In this report we discuss some of the issues involved in the specialization and optimization of constraint logic programs with dynamic scheduling. Dynamic scheduling, as any other form of concurrency, increases the expressive power of constraint logic programs, but also introduces run-time overhead. The objective of the specialization and optimization is to reduce as much as possible such overhead automatically, while preserving the semantics of the original programs. This is done by program transformation based on global analysis. We present implementation techniques for this purpose and report on experimental results obtained from an implementation of the techniques in the context of the CIAO compiler.
Resumo:
In previous works we demonstrated the benefits of using micro–nano patterning materials to be used as bio-photonic sensing cells (BICELLs), referred as micro–nano photonic structures having immobilized bioreceptors on its surface with the capability of recognizing the molecular binding by optical transduction. Gestrinone/anti-gestrinone and BSA/anti-BSA pairs were proven under different optical configurations to experimentally validate the biosensing capability of these bio-sensitive photonic architectures. Moreover, Three-Dimensional Finite Difference Time Domain (FDTD) models were employed for simulating the optical response of these structures. For this article, we have developed an effective analytical simulation methodology capable of simulating complex biophotonic sensing architectures. This simulation method has been tested and compared with previous experimental results and FDTD models. Moreover, this effective simulation methodology can be used for efficiently design and optimize any structure as BICELL. In particular for this article, six different BICELL's types have been optimized. To carry out this optimization we have considered three figures of merit: optical sensitivity, Q-factor and signal amplitude. The final objective of this paper is not only validating a suitable and efficient optical simulation methodology but also demonstrating the capability of this method for analyzing the performance of a given number of BICELLs for label-free biosensing.