996 resultados para BLOOD CHEMISTRY
Resumo:
Because of the emergence of dried blood spots (DBS) as an attractive alternative to conventional venous plasma sampling in many pharmaceutical companies and clinical laboratories, different analytical approaches have been developed to enable automated handling of DBS samples without any pretreatment. Associated with selective and sensitive MS-MS detection, these procedures give good results in the rapid identification and quantification of drugs (generally less than 3 min total run time), which is desirable because of the high throughput requirements of analytical laboratories. The objective of this review is to describe the analytical concepts of current direct DBS techniques and to present their advantages and disadvantages, with particular focus on automation capacity and commercial availability. Finally, an overview of the different biomedical applications in which these concepts could be of major interest will be presented.
Resumo:
BACKGROUND AND PURPOSE: A right-to-left shunt can be identified by contrast transcranial Doppler ultrasonography (c-TCD) at rest and/or after a Valsalva maneuver (VM) or by arterial blood gas (ABG) measurement. We assessed the influence of controlled strain pressures and durations during VM on the right-to-left passage of microbubbles, on which depends the shunt classification by c-TCD, and correlated it with the right-to-left shunt evaluation by ABG measurements in stroke patients with patent foramen ovale (PFO). METHODS: We evaluated 40 stroke patients with transesophageal echocardiography-documented PFO. The microbubbles were recorded with TCD at rest and after 4 different VM conditions with controlled duration and target strain pressures (duration in seconds and pressure in cm H2O, respectively): V5-20, V10-20, V5-40, and V10-40. The ABG analysis was performed after pure oxygen breathing in 34 patients, and the shunt was calculated as percentage of cardiac output. RESULTS: Among all VM conditions, V5-40 and V10-40 yielded the greatest median number of microbubbles (84 and 95, respectively; P<0.01). A significantly larger number of microbubbles were detected in V5-40 than in V5-20 (P<0.001) and in V10-40 than in V10-20 (P<0.01). ABG was not sensitive enough to detect a shunt in 31 patients. CONCLUSIONS: The increase of VM expiratory pressure magnifies the number of microbubbles irrespective of the strain duration. Because the right-to-left shunt classification in PFO is based on the number of microbubbles, a controlled VM pressure is advised for a reproducible shunt assessment. The ABG measurement is not sensitive enough for shunt assessment in stroke patients with PFO.
Resumo:
We studied two of the possible factors which can interfere with specific DNA amplification in a peripheral-blood PCR assay used for the diagnosis of human brucellosis. We found that high concentrations of leukocyte DNA and heme compounds inhibit PCR. These inhibitors can be efficiently suppressed by increasing the number of washings to four or five and decreasing the amount of total DNA to 2 to 4 microg, thereby avoiding false-negative results.
Resumo:
BACKGROUND: The storage of blood induces the formation of erythrocytes-derived microparticles. Their pathogenic role in blood transfusion is not known so far, especially the risk to trigger alloantibody production in the recipient. This work aims to study the expression of clinically significant blood group antigens on the surface of red blood cells microparticles. MATERIAL AND METHODS: Red blood cells contained in erythrocyte concentrates were stained with specific antibodies directed against blood group antigens and routinely used in immunohematology practice. After inducing erythrocytes vesiculation with calcium ionophore, the presence of blood group antigens was analysed by flow cytometry. RESULTS: The expression of several blood group antigens from the RH, KEL, JK, FY, MNS, LE and LU systems was detected on erythrocyte microparticles. The presence of M (MNS1), N (MNS2) and s (MNS4) antigens could not be demonstrated by flow cytometry, despite that glycophorin A and B were identified on microparticles using anti-CD235a and anti-MNS3. DISCUSSION: We conclude that blood group antigens are localized on erythrocytes-derived microparticles and probably keep their immunogenicity because of their capacity to bind specific antibody. Selective segregation process during vesiculation or their ability to elicit an immune response in vivo has to be tested by further studies.
Resumo:
Postmortem chemistry is becoming increasingly essential in the forensic pathology routine and considerable progress has been made over the past years. Biochemical analyses of vitreous humor, cerebrospinal fluid, blood and urine may provide significant information in determining the cause of death or in elucidating forensic cases. Postmortem chemistry may essentially contribute in the determination of the cause of death when the pathophysiological changes involved in the death process cannot be detected by morphological methods (e.g. diabetes mellitus, alcoholic ketoacidosis and electrolytic disorders). It can also provide significant information and useful support in other forensic situations, including anaphylaxis, hypothermia, sepsis and hormonal disturbances. In this article, we present a review of the literature that covers this vast topic and we report the results of our observations. We have focused our attention on glucose metabolism, renal function and electrolytic disorders.
Resumo:
In gram-negative bacteria, the outer membrane lipopolysaccharide is the main component triggering cytokine release from peripheral blood mononuclear cells (PBMCs). In gram-positive bacteria, purified walls also induce cytokine release, but stimulation requires 100 times more material. Gram-positive walls are complex megamolecules reassembling distinct structures. Only some of them might be inflammatory, whereas others are not. Teichoic acids (TA) are an important portion (> or =50%) of gram-positive walls. TA directly interact with C3b of complement and the cellular receptor for platelet-activating factor. However, their contribution to wall-induced cytokine-release by PBMCs has not been studied in much detail. In contrast, their membrane-bound lipoteichoic acids (LTA) counterparts were shown to trigger inflammation and synergize with peptidoglycan (PGN) for releasing nitric oxide (NO). This raised the question as to whether TA are also inflammatory. We determined the release of tumor necrosis factor (TNF) by PBMCs exposed to a variety of TA-rich and TA-free wall fragments from Streptococcus pneumoniae and Staphylococcus aureus. TA-rich walls from both organisms induced measurable TNF release at concentrations of 1 microg/ml. Removal of wall-attached TA did not alter this activity. Moreover, purified pneumococcal and staphylococcal TA did not trigger TNF release at concentrations as high as > or =100 microg/ml. In contrast, purified LTA triggered TNF release at 1 microg/ml. PGN-stem peptide oligomers lacking TA or amino-sugars were highly active and triggered TNF release at concentrations as low as 0.01 microg/ml (P. A. Majcherczyk, H. Langen, et al., J. Biol. Chem. 274:12537-12543,1999). Thus, although TA is an important part of gram-positive walls, it did not participate to the TNF-releasing activity of PGN.
Resumo:
Specialized glucosensing neurons are present in the hypothalamus, some of which neighbor the median eminence, where the blood-brain barrier has been reported leaky. A leaky blood-brain barrier implies high tissue glucose levels and obviates a role for endothelial glucose transporters in the control of hypothalamic glucose concentration, important in understanding the mechanisms of glucose sensing We therefore addressed the question of blood-brain barrier integrity at the hypothalamus for glucose transport by examining the brain tissue-to-plasma glucose ratio in the hypothalamus relative to other brain regions. We also examined glycogenolysis in hypothalamus because its occurrence is unlikely in the potential absence of a hypothalamus-blood interface. Across all regions the concentration of glucose was comparable at a given plasma glucose concentration and was a near linear function of plasma glucose. At steady-state, hypothalamic glucose concentration was similar to the extracellular hypothalamic glucose concentration reported by others. Hypothalamic glycogen fell at a rate of approximately 1.5 micromol/g/h and remained present in substantial amounts. We conclude for the hypothalamus, a putative primary site of brain glucose sensing that: the rate-limiting step for glucose transport into brain cells is at the blood-hypothalamus interface, and that glycogenolysis is consistent with a substantial blood -to- intracellular glucose concentration gradient.
Resumo:
There is little information on how neuropeptide Y (NPY) proteolysis by peptidases occurs in serum, in part because reliable techniques are lacking to distinguish different NPY immunoreactive forms and also because the factors affecting the expression of these enzymes have been poorly studied. In the present study, LC-MS/MS was used to identify and quantify NPY fragments resulting from peptidolytic cleavage of NPY(1-36) upon incubation with human serum. Kinetic studies indicated that NPY(1-36) is rapidly cleaved in serum into 3 main fragments with the following order of efficacy: NPY(3-36) >> NPY(3-35) > NPY(2-36). Trace amounts of additional NPY forms were identified by accurate mass spectrometry. Specific inhibitors of dipeptidyl peptidase IV, kallikrein, and aminopeptidase P prevented the production of NPY(3-36), NPY(3-35), and NPY(2-36), respectively. Plasma kallikrein at physiological concentrations converted NPY(3-36) into NPY(3-35). Receptor binding assays revealed that NPY(3-35) is unable to bind to NPY Y1, Y2, and Y5 receptors; thus NPY(3-35) may represent the major metabolic clearance product of the Y2/Y5 agonist, NPY(3-36).
Resumo:
BACKGROUND: The renal enzyme renin cleaves from the hepatic alpha(2)-globulin angiotensinogen angiotensin-(1-10) decapeptide [Ang-(1-10)], which is further metabolized to smaller peptides that help maintain cardiovascular homeostasis. The Ang-(1-7) heptapeptide has been reported to have several physiological effects, including natriuresis, diuresis, vasodilation, and release of vasopressin and prostaglandins. METHODS: To investigate Ang-(1-7) in clinical settings, we developed a method to measure immunoreactive (ir-) Ang-(1-7) in 2 mL of human blood and to estimate plasma concentrations by correcting for the hematocrit. A sensitive and specific antiserum against Ang-(1-7) was raised in a rabbit. Human blood was collected in the presence of an inhibitor mixture including a renin inhibitor to prevent peptide generation in vitro. Ang-(1-7) was extracted into ethanol and purified on phenylsilylsilica. The peptide was quantified by radioimmunoassay. Increasing doses of Ang-(1-7) were infused into volunteers, and plasma concentrations of the peptide were measured. RESULTS: The detection limit for plasma ir-Ang-(1-7) was 1 pmol/L. CVs for high and low blood concentrations were 4% and 20%, respectively, and between-assay CVs were 8% and 13%, respectively. Reference values for human plasma concentrations of ir-Ang-(1-7) were 1.0-9.5 pmol/L (median, 4.7 pmol/L) and increased linearly during infusion of increasing doses of Ang-(1-7). CONCLUSIONS: Reliable measurement of plasma ir-Ang-(1-7) is achieved with efficient inhibition of enzymes that generate or metabolize Ang-(1-7) after blood sampling, extraction in ethanol, and purification on phenylsilylsilica, and by use of a specific antiserum.
Resumo:
Hematocrit (Hct) is one of the most critical issues associated with the bioanalytical methods used for dried blood spot (DBS) sample analysis. Because Hct determines the viscosity of blood, it may affect the spreading of blood onto the filter paper. Hence, accurate quantitative data can only be obtained if the size of the paper filter extracted contains a fixed blood volume. We describe for the first time a microfluidic-based sampling procedure to enable accurate blood volume collection on commercially available DBS cards. The system allows the collection of a controlled volume of blood (e.g., 5 or 10 μL) within several seconds. Reproducibility of the sampling volume was examined in vivo on capillary blood by quantifying caffeine and paraxanthine on 5 different extracted DBS spots at two different time points and in vitro with a test compound, Mavoglurant, on 10 different spots at two Hct levels. Entire spots were extracted. In addition, the accuracy and precision (n = 3) data for the Mavoglurant quantitation in blood with Hct levels between 26% and 62% were evaluated. The interspot precision data were below 9.0%, which was equivalent to that of a manually spotted volume with a pipet. No Hct effect was observed in the quantitative results obtained for Hct levels from 26% to 62%. These data indicate that our microfluidic-based sampling procedure is accurate and precise and that the analysis of Mavoglurant is not affected by the Hct values. This provides a simple procedure for DBS sampling with a fixed volume of capillary blood, which could eliminate the recurrent Hct issue linked to DBS sample analysis.
Resumo:
The 2011 International Association of Athletics Federation (IAAF) World Championships took place in Daegu, Korea. For the first time, all athletes were blood tested prior to the competition in order to give a clear signal to the world athletic community of the wish to enter into the era of the Athlete Biological Passport and fight against doping in their sport. The hematological parameters were measured on site. Thus, a mobile-accredited laboratory for blood testing was created in Daegu. Two serum tubes were collected for clinical chemistry and hormonal analyses in order to build the bases of the endocrine and the androgen (steroid) modules of the Athlete Biological Passport in blood. This paper describes some of the main challenges the project faced with regard to the large number of athletes, competing in different disciplines, and the logistic problems that had to be solved for smart implementation of one of the most complex operations organized in the last decade in the fight against doping.
Resumo:
The fasting-induced adipose factor (FIAF, ANGPTL4, PGAR, HFARP) was previously identified as a novel adipocytokine that was up-regulated by fasting, by peroxisome proliferator-activated receptor agonists, and by hypoxia. To further characterize FIAF, we studied regulation of FIAF mRNA and protein in liver and adipose cell lines as well as in human and mouse plasma. Expression of FIAF mRNA was up-regulated by peroxisome proliferator-activated receptor alpha (PPARalpha) and PPARbeta/delta agonists in rat and human hepatoma cell lines and by PPARgamma and PPARbeta/delta agonists in mouse and human adipocytes. Transactivation, chromatin immunoprecipitation, and gel shift experiments identified a functional PPAR response element within intron 3 of the FIAF gene. At the protein level, in human and mouse blood plasma, FIAF was found to be present both as the native protein and in a truncated form. Differentiation of mouse 3T3-L1 adipocytes was associated with the production of truncated FIAF, whereas in human white adipose tissue and SGBS adipocytes, only native FIAF could be detected. Interestingly, truncated FIAF was produced by human liver. Treatment with fenofibrate, a potent PPARalpha agonist, markedly increased plasma levels of truncated FIAF, but not native FIAF, in humans. Levels of both truncated and native FIAF showed marked interindividual variation but were not associated with body mass index and were not influenced by prolonged semistarvation. Together, these data suggest that FIAF, similar to other adipocytokines such as adiponectin, may partially exert its function via a truncated form.
Resumo:
Regulatory T cells (Tregs) play a key role in immune system homeostasis and tolerance to antigens, thereby preventing autoimmunity, and may be partly responsible for the lack of an appropriate immune response against tumor cells. Although not sufficient, a high expression of forkhead box P3 (FOXP3) is necessary for their suppressive function. Recent reports have shown that histones deacetylase inhibitors increased FOXP3 expression in T cells. We therefore decided to investigate in non-Tregs CD4-positive cells, the mechanisms by which an aspecific opening of the chromatin could lead to an increased FOXP3 expression. We focused on binding of potentially activating transcription factors to the promoter region of FOXP3 and on modifications in the five miRs constituting the Tregs signature. Valproate treatment induced binding of Ets-1 and Ets-2 to the FOXP3 promoter and acted positively on its expression, by increasing the acetylation of histone H4 lysines. Valproate treatment also induced the acquisition of the miRs Tregs signature. To elucidate whether the changes in the miRs expression could be due to the increased FOXP3 expression, we transduced these non-Tregs with a FOXP3 lentiviral expression vector, and found no changes in miRs expression. Therefore, the modification in their miRs expression profile is not due to an increased expression of FOXP3 but directly results from histones deacetylase inhibition. Rather, the increased FOXP3 expression results from the additive effects of Ets factors binding and the change in expression level of miR-21 and miR-31. We conclude that valproate treatment of human non-Tregs confers on them a molecular profile similar to that of their regulatory counterpart.