77 resultados para BARYONS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a finite size bag like picture consisting of quarks (2 flavour) and gluons with SU(3) colour singlet restriction on the partition function and the chemical potential μ ≠ 0 with the constraint that the baryon number b = 0 and b = 1 for mesons and baryons, respectively we find a very good agreement with baryon density of states upto 2 GeV and with mesonic ones upto 1.3 GeV. Similar to a hadron-scale string theory our calculation also suggests that beyond 1.3 GeV there should exist exotic mesons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently Lukierski et al. [1] defined a κ-deformed Poincaré algebra which is characterized by having the energy-momentum and angular momentum sub-algebras not deformed. Further Biedenharn et al. [2] showed that on gauging the κ-deformed electron with the electromagnetic field, one can set a limit on the allowed value of the deformation parameter ∈ ≡ 1/κ < 1 fm. We show that one gets Regge like angular excitations, J, of the mesons, non-strange and strange baryons, with a value of ∈ ∼ 0.082 fm and predict a flattening with J of the corresponding trajectories. The Regge fit improves on including deformation, particularly for the baryon spectrum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the interaction between dark sectors by considering the momentum transfer caused by the dark matter scattering elastically within the dark energy fluid. Describing the dark scattering analogy to the Thomson scattering which couples baryons and photons, we examine the impact of the dark scattering in CMB observations. Performing global fitting with the latest observational data, we find that for a dark energy equation of state w < -1, the CMB gives tight constraints on dark matter-dark energy elastic scattering. Assuming a dark matter particle of proton mass, we derive an elastic scattering cross section of sigma(D) < 3.295 x 10(-10)sigma(T) where sigma(T) is the cross section of Thomson scattering. For w > -1, however, the constraints are poor. For w = -1, sigma(D) can formally take any value.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The magnetic moments of the low-lying spin-parity J(P) = 1/2(-), 3/2(-) Lambda resonances, like, for example, Lambda(1405) 1/2(-), Lambda(1520) 3/2(-), as well as their transition magnetic moments, are calculated using the chiral quark model. The results found are compared with those obtained from the nonrelativistic quark model and those of unitary chiral theories, where some of these states are generated through the dynamics of two hadron coupled channels and their unitarization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The production of K*(892)(0) and phi(1020) in pp collisions at root s = 7 TeV was measured by the ALICE experiment at the LHC. The yields and the transverse momentum spectra d(2)N/dydp(T) at midrapidity vertical bar y vertical bar < 0.5 in the range 0 < p(T) < 6 GeV/c for K*(892)(0) and 0.4 < p(T) < 6 GeV/c for phi(1020) are reported and compared to model predictions. Using the yield of pions, kaons, and Omega baryons measured previously by ALICE at root s = 7 TeV, the ratios K*/K-, phi/K*, phi/ K-, phi/pi(-), and (Omega + <(Omega)over bar>)/phi are presented. The values of the K*/K-, phi/K* and phi/K- ratios are similar to those found at lower centre-of-mass energies. In contrast, the phi/pi(-) ratio, which has been observed to increase with energy, seems to saturate above 200 GeV. The (Omega + (Omega) over bar)/phi ratio in the p(T) range 1-5 GeV/ c is found to be in good agreement with the prediction of the HIJING/B (B) over bar v2.0model with a strong colour field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A measurement of the multi-strange Xi(-) and Omega(-) baryons and their antiparticles by the ALICE experiment at the CERN Large Hadron Collider (LHC) is presented for inelastic proton-proton collisions at a centre-of-mass energy of 7 TeV. The transverse momentum (p(T)) distributions were studied at mid-rapidity (vertical bar y vertical bar < 0.5) in the range of 0.6 < p(T) < 8.5 GeV/c Xi(-) for and Xi(+) baryons, and in the range of 0.8 < P-T < 5 GeV/c for Omega(-) and<(Omega)over bar>(+). Baryons and antibaryons were measured as separate particles and we find that the baryon to antibaryon ratio of both particle species is consistent with unity over the entire range of the measurement. The statistical precision of the current data has allowed us to measure a difference between the mean p(T) of Xi(-) ((Xi) over bar)(+) and Omega(-) ((Omega) over bar (+)). Particle yields, mean pi, and the spectra in the intermediate pi range are not well described by the PYTHIA Perugia 2011 tune Monte Carlo event generator, which has been tuned to reproduce the early LHC data. The discrepancy is largest for Omega(-)((Omega) over bar (+)). This PYTHIA tune approaches the pi spectra of Xi(-) and Xi(+) baryons below p(T) <0.85 GeV/c and describes the Xi(-) and Xi(+) spectra above p(T) > 6.0 GeV/c. We also illustrate the difference between the experimental data and model by comparing the corresponding ratios of (Omega(-) +(Omega) over bar (+))/(Xi(-) + Xi(+)) as a function of transverse mass. (C) 2012 CERN. Published by Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In dieser Arbeit werden die QCD-Strahlungskorrekturen in erster Ordnung der starken Kopplungskonstanten für verschiedene Polarisationsobservablen zu semileptonischen Zerfällen eines bottom-Quarks in ein charm-Quark und ein Leptonpaar berechnet. Im ersten Teil wird der Zerfall eines unpolarisierten b-Quarks in ein polarisiertes c-Quark sowie ein geladenes Lepton und ein Antineutrino im Ruhesystem des b-Quarks analysiert. Es werden die Strahlungskorrekturen für den unpolarisierten und den polarisierten Beitrag zur differentiellen Zerfallsrate nach der Energie des c-Quarks berechnet, wobei das geladene Lepton als leicht angesehen und seine Masse daher vernachlässigt wird. Die inklusive differentielle Rate wird durch zwei Strukturfunktionen in analytischer Form dargestellt. Anschließend werden die Strukturfunktionen und die Polarisation des c-Quarks numerisch ausgewertet. Nach der Einführung der Helizitäts-Projektoren befaßt sich der zweite Teil mit dem kaskadenartigen Zerfall eines polarisierten b-Quarks in ein unpolarisiertes c-Quark und ein virtuelles W-Boson, welches weiter in ein Paar leichter Leptonen zerfällt. Es werden die inklusiven Strahlungskorrekturen zu drei unpolarisierten und fünf polarisierten Helizitäts-Strukturfunktionen in analytischer Form berechnet, welche die Winkelverteilung für die differentielle Zerfallsrate nach dem Viererimpulsquadrat des W-Bosons beschreiben. Die Strukturfunktionen enthalten die Informationen sowohl über die polare Winkelverteilung zwischen dem Spinvektor des b-Quarks und dem Impulsvektor des W-Bosons als auch über die räumliche Winkelverteilung zwischen den Impulsen des W-Bosons und des Leptonpaars. Der Impuls und der Spinvektor des b-Quarks sowie der Impuls des W-Bosons werden im b-Ruhesystem analysiert, während die Impulse des Leptonpaars im W-Ruhesystem ausgewertet werden. Zusätzlich zu den genannten Strukturfunktionen werden noch die unpolarisierte und die polarisierte skalare Strukturfunktion angegeben, die in Anwendungen bei hadronischen Zerfällen eine Rolle spielen. Anschließend folgt eine numerische Auswertung aller berechneten Strukturfunktionen. Im dritten Teil werden die nichtperturbativen HQET-Korrekturen zu inklusiven semileptonischen Zerfällen schwerer Hadronen diskutiert, welche ein b-Quark enthalten. Sie beschreiben hadronische Korrekturen, die durch die feste Bindung des b-Quarks in Hadronen hervorgerufen werden. Es werden insgesamt fünf unpolarisierte und neun polarisierte Helizitäts-Strukturfunktionen in analytischer Form angegeben, die auch eine endliche Masse und den Spin des geladenen Leptons berücksichtigen. Die Strukturfunktionen werden sowohl in differentieller Form in Abhängigkeit des quadrierten Viererimpulses des W-Bosons als auch in integrierter Form präsentiert. Zum Schluß werden die zuvor erhaltenen Resultate auf die semi-inklusiven hadronischen Zerfälle eines polarisierten Lambda_b-Baryons oder eines B-Mesons in ein D_s- oder ein D_s^*-Meson unter Berücksichtigung der D_s^*-Polarisation angewandt. Für die zugehörigen Winkelverteilungen werden die inklusiven QCD- und die nichtperturbativen HQET-Korrekturen zu den Helizitäts-Strukturfunktionen in analytischer Form angegeben und anschließend numerisch ausgewertet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A fundamental gap in the current understanding of collapsed structures in the universe concerns the thermodynamical evolution of the ordinary, baryonic component. Unopposed radiative cooling of plasma would lead to the cooling catastrophe, a massive inflow of condensing gas toward the centre of galaxies, groups and clusters. The last generation of multiwavelength observations has radically changed our view on baryons, suggesting that the heating linked to the active galactic nucleus (AGN) may be the balancing counterpart of cooling. In this Thesis, I investigate the engine of the heating regulated by the central black hole. I argue that the mechanical feedback, based on massive subrelativistic outflows, is the key to solving the cooling flow problem, i.e. dramatically quenching the cooling rates for several billion years without destroying the cool-core structure. Using an upgraded version of the parallel 3D hydrodynamic code FLASH, I show that anisotropic AGN outflows can further reproduce fundamental observed features, such as buoyant bubbles, cocoon shocks, sonic ripples, metals dredge-up, and subsonic turbulence. The latter is an essential ingredient to drive nonlinear thermal instabilities, which cause cold gas condensation, a residual of the quenched cooling flow and, later, fuel for the AGN feedback engine. The self-regulated outflows are systematically tested on the scales of massive clusters, groups and isolated elliptical galaxies: in lighter less bound objects the feedback needs to be gentler and less efficient, in order to avoid drastic overheating. In this Thesis, I describe in depth the complex hydrodynamics, involving the coupling of the feedback energy to that of the surrounding hot medium. Finally, I present the merits and flaws of all the proposed models, with a critical eye toward observational concordance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we investigate the influence of dark energy on structure formation, within five different cosmological models, namely a concordance $\Lambda$CDM model, two models with dynamical dark energy, viewed as a quintessence scalar field (using a RP and a SUGRA potential form) and two extended quintessence models (EQp and EQn) where the quintessence scalar field interacts non-minimally with gravity (scalar-tensor theories). We adopted for all models the normalization of the matter power spectrum $\sigma_{8}$ to match the CMB data. For each model, we perform hydrodynamical simulations in a cosmological box of $(300 \ {\rm{Mpc}} \ h^{-1})^{3}$ including baryons and allowing for cooling and star formation. We find that, in models with dynamical dark energy, the evolving cosmological background leads to different star formation rates and different formation histories of galaxy clusters, but the baryon physics is not affected in a relevant way. We investigate several proxies for the cluster mass function based on X-ray observables like temperature, luminosity, $M_{gas}$, and $Y_{X}$. We confirm that the overall baryon fraction is almost independent of the dark energy models within few percentage points. The same is true for the gas fraction. This evidence reinforces the use of galaxy clusters as cosmological probe of the matter and energy content of the Universe. We also study the $c-M$ relation in the different cosmological scenarios, using both dark matter only and hydrodynamical simulations. We find that the normalization of the $c-M$ relation is directly linked to $\sigma_{8}$ and the evolution of the density perturbations for $\Lambda$CDM, RP and SUGRA, while for EQp and EQn it depends also on the evolution of the linear density contrast. These differences in the $c-M$ relation provide another way to use galaxy clusters to constrain the underlying cosmology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The LHCb experiment has been designed to perform precision measurements in the flavour physics sector at the Large Hadron Collider (LHC) located at CERN. After the recent observation of CP violation in the decay of the Bs0 meson to a charged pion-kaon pair at LHCb, it is interesting to see whether the same quark-level transition in Λ0b baryon decays gives rise to large CP-violating effects. Such decay processes involve both tree and penguin Feynman diagrams and could be sensitive probes for physics beyond the Standard Model. The measurement of the CP-violating observable defined as ∆ACP = ACP(Λ0b → pK−)−ACP(Λ0b →pπ−),where ACP(Λ0b →pK−) and ACP(Λ0b →pπ−) are the direct CP asymmetries in Λ0b → pK− and Λ0b → pπ− decays, is presented for the first time using LHCb data. The procedure followed to optimize the event selection, to calibrate particle identification, to parametrise the various components of the invariant mass spectra, and to compute corrections due to the production asymmetry of the initial state and the detection asymmetries of the final states, is discussed in detail. Using the full 2011 and 2012 data sets of pp collisions collected with the LHCb detector, corresponding to an integrated luminosity of about 3 fb−1, the value ∆ACP = (0.8 ± 2.1 ± 0.2)% is obtained. The first uncertainty is statistical and the second corresponds to one of the dominant systematic effects. As the result is compatible with zero, no evidence of CP violation is found. This is the most precise measurement of CP violation in the decays of baryons containing the b quark to date. Once the analysis will be completed with an exhaustive study of systematic uncertainties, the results will be published by the LHCb Collaboration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lattice Quantum Chromodynamics (LQCD) is the preferred tool for obtaining non-perturbative results from QCD in the low-energy regime. It has by nowrnentered the era in which high precision calculations for a number of phenomenologically relevant observables at the physical point, with dynamical quark degrees of freedom and controlled systematics, become feasible. Despite these successes there are still quantities where control of systematic effects is insufficient. The subject of this thesis is the exploration of the potential of todays state-of-the-art simulation algorithms for non-perturbativelyrn$\mathcal{O}(a)$-improved Wilson fermions to produce reliable results in thernchiral regime and at the physical point both for zero and non-zero temperature. Important in this context is the control over the chiral extrapolation. Thisrnthesis is concerned with two particular topics, namely the computation of hadronic form factors at zero temperature, and the properties of the phaserntransition in the chiral limit of two-flavour QCD.rnrnThe electromagnetic iso-vector form factor of the pion provides a platform to study systematic effects and the chiral extrapolation for observables connected to the structure of mesons (and baryons). Mesonic form factors are computationally simpler than their baryonic counterparts but share most of the systematic effects. This thesis contains a comprehensive study of the form factor in the regime of low momentum transfer $q^2$, where the form factor is connected to the charge radius of the pion. A particular emphasis is on the region very close to $q^2=0$ which has not been explored so far, neither in experiment nor in LQCD. The results for the form factor close the gap between the smallest spacelike $q^2$-value available so far and $q^2=0$, and reach an unprecedented accuracy at full control over the main systematic effects. This enables the model-independent extraction of the pion charge radius. The results for the form factor and the charge radius are used to test chiral perturbation theory ($\chi$PT) and are thereby extrapolated to the physical point and the continuum. The final result in units of the hadronic radius $r_0$ is rn$$ \left\langle r_\pi^2 \right\rangle^{\rm phys}/r_0^2 = 1.87 \: \left(^{+12}_{-10}\right)\left(^{+\:4}_{-15}\right) \quad \textnormal{or} \quad \left\langle r_\pi^2 \right\rangle^{\rm phys} = 0.473 \: \left(^{+30}_{-26}\right)\left(^{+10}_{-38}\right)(10) \: \textnormal{fm} \;, $$rn which agrees well with the results from other measurements in LQCD and experiment. Note, that this is the first continuum extrapolated result for the charge radius from LQCD which has been extracted from measurements of the form factor in the region of small $q^2$.rnrnThe order of the phase transition in the chiral limit of two-flavour QCD and the associated transition temperature are the last unkown features of the phase diagram at zero chemical potential. The two possible scenarios are a second order transition in the $O(4)$-universality class or a first order transition. Since direct simulations in the chiral limit are not possible the transition can only be investigated by simulating at non-zero quark mass with a subsequent chiral extrapolation, guided by the universal scaling in the vicinity of the critical point. The thesis presents the setup and first results from a study on this topic. The study provides the ideal platform to test the potential and limits of todays simulation algorithms at finite temperature. The results from a first scan at a constant zero-temperature pion mass of about 290~MeV are promising, and it appears that simulations down to physical quark masses are feasible. Of particular relevance for the order of the chiral transition is the strength of the anomalous breaking of the $U_A(1)$ symmetry at the transition point. It can be studied by looking at the degeneracies of the correlation functions in scalar and pseudoscalar channels. For the temperature scan reported in this thesis the breaking is still pronounced in the transition region and the symmetry becomes effectively restored only above $1.16\:T_C$. The thesis also provides an extensive outline of research perspectives and includes a generalisation of the standard multi-histogram method to explicitly $\beta$-dependent fermion actions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The quark model successfully describes all ground state bary-ons as members of $SU(N)$ flavour multiplets. For excited baryon states the situation is totally different. There are much less states found in the experiment than predicted in most theoretical calculations. This fact has been known for a long time as the 'missing resonance problem'. In addition, many states found in experiments are only poorly measured up to now. Therefore, further experimental efforts are needed to clarify the situation.rnrnAt mbox{COMPASS}, reactions of a $190uskgigaeVperclight$ hadron beam impinging on a liquid hydrogen target are investigated.rnThe hadron beam contains different species of particles ($pi$, $K$, $p$). To distinguish these particles, two Cherenkov detectors are used. In this thesis, a new method for the identification of particles from the detector information is developed. This method is based on statistical approaches and allows a better kaon identification efficiency with a similar purity compared to the method, which was used before.rnrnThe reaction $pprightarrow ppX$ with $X=(pi^0,~eta,~omega,~phi)$ is used to study different production mechanisms. A previous analysis of $omega$ and $phi$ mesons is extended to pseudoscalar mesons. As the resonance contributions in $peta$ are smaller than in $ppi^0$ a different behaviour of these two final states is expected as a function of kinematic variables. The investigation of these differences allows to study different production mechanisms and to estimate the size of the resonant contribution in the different channels.rnrnIn addition, the channel $pprightarrow ppX$ allows to study baryon resonances in the $pX$ system.rnIn the mbox{COMPASS} energy regime, the reaction is dominated by Pomeron exchange. As a Pomeron carries vacuum quantum numbers, no isospin is transferred between the target proton and the beam proton. Therefore, the $pX$ final state has isospin $textstylefrac{1}{2}$ and all baryon resonances in this channel are $N^ast$ baryons. This offers the opportunity to do spectroscopy without taking $Delta$ resonances into account. rnrnTo disentangle the contributions of different resonances a partial wave analysis (PWA) is used. Different resonances have different spin and parity $J^parity$, which results in different angular distributions of the decay particles. These angular distributions can be calculated from models and then be fitted to the data. From the fit the contributions of the single resonances as well as resonance parameters -- namely the mass and the width -- can be extracted. In this thesis, two different approaches for a partial wave analysis of the reaction $pprightarrow pppi^0$ are developed and tested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A measurement of the parity-violating decay asymmetry parameter, αb , and the helicity amplitudes for the decay Λ 0 b →J/ψ(μ + μ − )Λ 0 (pπ − ) is reported. The analysis is based on 1400 Λ 0 b and Λ ¯ 0 b baryons selected in 4.6  fb −1 of proton–proton collision data with a center-of-mass energy of 7 TeV recorded by the ATLAS experiment at the LHC. By combining the Λ 0 b and Λ ¯ 0 b samples under the assumption of CP conservation, the value of α b is measured to be 0.30±0.16(stat)±0.06(syst) . This measurement provides a test of theoretical models based on perturbative QCD or heavy-quark effective theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the advent of the new extragalactic deuterium observations, Big Bang nucleosynthesis (BBN) is on the verge of undergoing a transformation. In the past, the emphasis has been on demonstrating the concordance of the BBN model with the abundances of the light isotopes extrapolated back to their primordial values by using stellar and galactic evolution theories. As a direct measure of primordial deuterium is converged upon, the nature of the field will shift to using the much more precise primordial D/H to constrain the more flexible stellar and galactic evolution models (although the question of potential systematic error in 4He abundance determinations remains open). The remarkable success of the theory to date in establishing the concordance has led to the very robust conclusion of BBN regarding the baryon density. This robustness remains even through major model variations such as an assumed first-order quark-hadron phase transition. The BBN constraints on the cosmological baryon density are reviewed and demonstrate that the bulk of the baryons are dark and also that the bulk of the matter in the universe is nonbaryonic. Comparison of baryonic density arguments from Lyman-α clouds, x-ray gas in clusters, and the microwave anisotropy are made.