938 resultados para Autoregressive Integrated Moving Average


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we study the asymptotic distribution of a simple two-stage (Hannan-Rissanen-type) linear estimator for stationary invertible vector autoregressive moving average (VARMA) models in the echelon form representation. General conditions for consistency and asymptotic normality are given. A consistent estimator of the asymptotic covariance matrix of the estimator is also provided, so that tests and confidence intervals can easily be constructed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis entitled seasonal and interannual variability of sea level and associated surface meteorological parameters at cochin.The interesting aspect of studying sea level variability on different time scales can be attributed to the diversity of its applications.Study of tides could perhaps be the oldest branch of physical oceanography.The thesis is presented in seven chapters. The first chapter gives, apart from a general introduction, a survey of literature on sea level variability on different time scales - tidal, seasonal and interannual (geological scales excluded), with particular emphasis on the work carried out in the Indian waters. The second chapter is devoted to the study of observed tides at Cochin on seasonal and interannual time scales using hourly water level data for the period 1988-1993. The third chapter describes the long-term climatology of some important surface oceanographic and meteorological parameters (at Cochin) which are supposed to affect the sea level. The fourth chapter addresses the problem of seasonal forecasting of the meteorological and oceanographic parameters at Cochin using autoregressive, sinusoidal and exponentially weighted moving average techniques and testing their accuracy with the observed data for the period 1991-1993. The fifth chapter describes the seasonal cycles of sea level and the driving forces at 16 stations along the Indian subcontinent. It also addresses the observed interannual variability of sea level at 15 stations using available multi-annual data sets. The sixth chapter deals with the problem of coastal trapped waves between Cochin and Beypore off the Kerala coast using sea level and atmospheric pressure data sets for the year 1977. The seventh and the last chapter contains the summary and conclusions and future outlook based on this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study is concerned with Autoregressive Moving Average (ARMA) models of time series. ARMA models form a subclass of the class of general linear models which represents stationary time series, a phenomenon encountered most often in practice by engineers, scientists and economists. It is always desirable to employ models which use parameters parsimoniously. Parsimony will be achieved by ARMA models because it has only finite number of parameters. Even though the discussion is primarily concerned with stationary time series, later we will take up the case of homogeneous non stationary time series which can be transformed to stationary time series. Time series models, obtained with the help of the present and past data is used for forecasting future values. Physical science as well as social science take benefits of forecasting models. The role of forecasting cuts across all fields of management-—finance, marketing, production, business economics, as also in signal process, communication engineering, chemical processes, electronics etc. This high applicability of time series is the motivation to this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper derives exact discrete time representations for data generated by a continuous time autoregressive moving average (ARMA) system with mixed stock and flow data. The representations for systems comprised entirely of stocks or of flows are also given. In each case the discrete time representations are shown to be of ARMA form, the orders depending on those of the continuous time system. Three examples and applications are also provided, two of which concern the stationary ARMA(2, 1) model with stock variables (with applications to sunspot data and a short-term interest rate) and one concerning the nonstationary ARMA(2, 1) model with a flow variable (with an application to U.S. nondurable consumers’ expenditure). In all three examples the presence of an MA(1) component in the continuous time system has a dramatic impact on eradicating unaccounted-for serial correlation that is present in the discrete time version of the ARMA(2, 0) specification, even though the form of the discrete time model is ARMA(2, 1) for both models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article examines the ability of several models to generate optimal hedge ratios. Statistical models employed include univariate and multivariate generalized autoregressive conditionally heteroscedastic (GARCH) models, and exponentially weighted and simple moving averages. The variances of the hedged portfolios derived using these hedge ratios are compared with those based on market expectations implied by the prices of traded options. One-month and three-month hedging horizons are considered for four currency pairs. Overall, it has been found that an exponentially weighted moving-average model leads to lower portfolio variances than any of the GARCH-based, implied or time-invariant approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The estimation of data transformation is very useful to yield response variables satisfying closely a normal linear model, Generalized linear models enable the fitting of models to a wide range of data types. These models are based on exponential dispersion models. We propose a new class of transformed generalized linear models to extend the Box and Cox models and the generalized linear models. We use the generalized linear model framework to fit these models and discuss maximum likelihood estimation and inference. We give a simple formula to estimate the parameter that index the transformation of the response variable for a subclass of models. We also give a simple formula to estimate the rth moment of the original dependent variable. We explore the possibility of using these models to time series data to extend the generalized autoregressive moving average models discussed by Benjamin er al. [Generalized autoregressive moving average models. J. Amer. Statist. Assoc. 98, 214-223]. The usefulness of these models is illustrated in a Simulation study and in applications to three real data sets. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work a new method is proposed of separated estimation for the ARMA spectral model based on the modified Yule-Walker equations and on the least squares method. The proposal of the new method consists of performing an AR filtering in the random process generated obtaining a new random estimate, which will reestimate the ARMA model parameters, given a better spectrum estimate. Some numerical examples will be presented in order to ilustrate the performance of the method proposed, which is evaluated by the relative error and the average variation coefficient.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis introduces new processing techniques for computer-aided interpretation of ultrasound images with the purpose of supporting medical diagnostic. In terms of practical application, the goal of this work is the improvement of current prostate biopsy protocols by providing physicians with a visual map overlaid over ultrasound images marking regions potentially affected by disease. As far as analysis techniques are concerned, the main contributions of this work to the state-of-the-art is the introduction of deconvolution as a pre-processing step in the standard ultrasonic tissue characterization procedure to improve the diagnostic significance of ultrasonic features. This thesis also includes some innovations in ultrasound modeling, in particular the employment of a continuous-time autoregressive moving-average (CARMA) model for ultrasound signals, a new maximum-likelihood CARMA estimator based on exponential splines and the definition of CARMA parameters as new ultrasonic features able to capture scatterers concentration. Finally, concerning the clinical usefulness of the developed techniques, the main contribution of this research is showing, through a study based on medical ground truth, that a reduction in the number of sampled cores in standard prostate biopsy is possible, preserving the same diagnostic power of the current clinical protocol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alternans of cardiac action potential duration (APD) is a well-known arrhythmogenic mechanism which results from dynamical instabilities. The propensity to alternans is classically investigated by examining APD restitution and by deriving APD restitution slopes as predictive markers. However, experiments have shown that such markers are not always accurate for the prediction of alternans. Using a mathematical ventricular cell model known to exhibit unstable dynamics of both membrane potential and Ca2+ cycling, we demonstrate that an accurate marker can be obtained by pacing at cycle lengths (CLs) varying randomly around a basic CL (BCL) and by evaluating the transfer function between the time series of CLs and APDs using an autoregressive-moving-average (ARMA) model. The first pole of this transfer function corresponds to the eigenvalue (λalt) of the dominant eigenmode of the cardiac system, which predicts that alternans occurs when λalt≤−1. For different BCLs, control values of λalt were obtained using eigenmode analysis and compared to the first pole of the transfer function estimated using ARMA model fitting in simulations of random pacing protocols. In all versions of the cell model, this pole provided an accurate estimation of λalt. Furthermore, during slow ramp decreases of BCL or simulated drug application, this approach predicted the onset of alternans by extrapolating the time course of the estimated λalt. In conclusion, stochastic pacing and ARMA model identification represents a novel approach to predict alternans without making any assumptions about its ionic mechanisms. It should therefore be applicable experimentally for any type of myocardial cell.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic resonance temperature imaging (MRTI) is recognized as a noninvasive means to provide temperature imaging for guidance in thermal therapies. The most common method of estimating temperature changes in the body using MR is by measuring the water proton resonant frequency (PRF) shift. Calculation of the complex phase difference (CPD) is the method of choice for measuring the PRF indirectly since it facilitates temperature mapping with high spatiotemporal resolution. Chemical shift imaging (CSI) techniques can provide the PRF directly with high sensitivity to temperature changes while minimizing artifacts commonly seen in CPD techniques. However, CSI techniques are currently limited by poor spatiotemporal resolution. This research intends to develop and validate a CSI-based MRTI technique with intentional spectral undersampling which allows relaxed parameters to improve spatiotemporal resolution. An algorithm based on autoregressive moving average (ARMA) modeling is developed and validated to help overcome limitations of Fourier-based analysis allowing highly accurate and precise PRF estimates. From the determined acquisition parameters and ARMA modeling, robust maps of temperature using the k-means algorithm are generated and validated in laser treatments in ex vivo tissue. The use of non-PRF based measurements provided by the technique is also investigated to aid in the validation of thermal damage predicted by an Arrhenius rate dose model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this work was to model lung cancer mortality as a function of past exposure to tobacco and to forecast age-sex-specific lung cancer mortality rates. A 3-factor age-period-cohort (APC) model, in which the period variable is replaced by the product of average tar content and adult tobacco consumption per capita, was estimated for the US, UK, Canada and Australia by the maximum likelihood method. Age- and sex-specific tobacco consumption was estimated from historical data on smoking prevalence and total tobacco consumption. Lung cancer mortality was derived from vital registration records. Future tobacco consumption, tar content and the cohort parameter were projected by autoregressive moving average (ARIMA) estimation. The optimal exposure variable was found to be the product of average tar content and adult cigarette consumption per capita, lagged for 2530 years for both males and females in all 4 countries. The coefficient of the product of average tar content and tobacco consumption per capita differs by age and sex. In all models, there was a statistically significant difference in the coefficient of the period variable by sex. In all countries, male age-standardized lung cancer mortality rates peaked in the 1980s and declined thereafter. Female mortality rates are projected to peak in the first decade of this century. The multiplicative models of age, tobacco exposure and cohort fit the observed data between 1950 and 1999 reasonably well, and time-series models yield plausible past trends of relevant variables. Despite a significant reduction in tobacco consumption and average tar content of cigarettes sold over the past few decades, the effect on lung cancer mortality is affected by the time lag between exposure and established disease. As a result, the burden of lung cancer among females is only just reaching, or soon will reach, its peak but has been declining for I to 2 decades in men. Future sex differences in lung cancer mortality are likely to be greater in North America than Australia and the UK due to differences in exposure patterns between the sexes. (c) 2005 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the exchange rate forecasting performance of neural network models are evaluated against the random walk, autoregressive moving average and generalised autoregressive conditional heteroskedasticity models. There are no guidelines available that can be used to choose the parameters of neural network models and therefore, the parameters are chosen according to what the researcher considers to be the best. Such an approach, however,implies that the risk of making bad decisions is extremely high, which could explain why in many studies, neural network models do not consistently perform better than their time series counterparts. In this paper, through extensive experimentation, the level of subjectivity in building neural network models is considerably reduced and therefore giving them a better chance of Forecasting exchange rates with linear and nonlinear models 415 performing well. The results show that in general, neural network models perform better than the traditionally used time series models in forecasting exchange rates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we indicate how integer-valued autoregressive time series Ginar(d) of ordre d, d ≥ 1, are simple functionals of multitype branching processes with immigration. This allows the derivation of a simple criteria for the existence of a stationary distribution of the time series, thus proving and extending some results by Al-Osh and Alzaid [1], Du and Li [9] and Gauthier and Latour [11]. One can then transfer results on estimation in subcritical multitype branching processes to stationary Ginar(d) and get consistency and asymptotic normality for the corresponding estimators. The technique covers autoregressive moving average time series as well.