217 resultados para Austenitic


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The water storage tanks of hotel trains suffered pitting corrosion. To identify the cause, the tanks were subjected to a detailed metallographic study and the chemical composition of the austenitic stainless steels used in their construction was determined. Both the tank water and the corrosion products were further examined by physicochemical and microbiological testing. Corrosion was shown to be related to an incompatibility between the chloride content of the water and the base and filler metals of the tanks. These findings formed the basis of recommendations aimed at the prevention and control of corrosion in such tanks. Se han detectado problemas de corrosión por picaduras en los depósitos de agua de trenes hotel. Para identificar las causas se llevó a cabo un detallado estudio metalográfico así como de la composición química de los aceros inoxidables austeníticos utilizados en su construcción. También se realizaron estudios fisicoquímicos y microbiológicos de los productos de corrosión. Se ha encontrado que los problemas de corrosión están relacionados con la incompatibilidad entre el contenido en cloruros del agua y los metales base y de aporte de la soldadura de los tanques. En base a estos hallazgos se proponen una serie de recomendaciones encaminadas a la prevención y control de la corrosión de dichos depósitos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Damage tolerance of high strength cold-drawn ferritic–austenitic stainless steel wires is assessed by means of tensile fracture tests of cracked wires. The fatigue crack is transversally propagated from the wire surface. The damage tolerance curve of the wires results from the empirical failure load when given as a function of crack depth. As a consequence of cold drawing, the wire microstructure is orientated along its longitudinal axis and anisotropic fracture behaviour is found at macrostructural level at the tensile failure of the cracked specimens. An in situ optical technique known as video image correlation VIC-2D is used to get an insight into this failure mechanism by tensile testing transversally fatigue cracked plane specimens extracted from the cold-drawn wires. Finally, the experimentally obtained damage tolerance curve of the cold-drawn ferritic–austenitic stainless steel wires is compared with that of an elementary plastic collapse model and existing data of two types of high strength eutectoid steel currently used as prestressing steel for concrete.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present investigation addresse the influence of laser welding process-ing parameters used for joining dis-similar metals (ferritic to austenitic steel), on the induced residual stress field. Welding was performed on a Nd:YAG laser DY033 (3300 W) in a continuous wave (CW), keyhole mode. The base metals (BM) employed in this study are AISI 1010 carbon steel (CS) and AISI 304L austenitic stainless steel (SS). Pairs of dissimilar plates of 200 mm x 45 mm x 3 mm were butt joined by laser welding. Different sets of parameters were used to engineer the base metals apportionment at joint formation, namely distinct dilution rates. Residual strain scanning, carried out by neutron diffraction was used to assess the joints. Through-thickness residual stress maps were determined for the laser welded samples of dis-similar steels using high spatial reso-lution. As a result, an appropriate set of processing parameters, able to mi-nimize the local tensile residual stress associated to the welding process, was found.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, autogenous laser welding was used to join thin plates of low carbon ferritic and austenitic stainless steel. Due to the differences in the thermo-physical properties of base metals, this kind of weld exhibits a complex microstructure, which frequently leads to an overall loss of joint quality. Four welded samples were prepared by using different sets of processing parameters, with the aim of minimizing the induced residual stress field. The dissimilar austenitic-ferritic joints obtained under all welding conditions were uniform and free of defects. Variations in beam position did not influence the weld geometiy, which is a typical keyhole welding. Microstructural characterization and residual strain scanning (by neutron diffraction) were used to assess the features of the joints. By varying laser beam power density and by displacing the laser beam towards the carbon steel side, an optimum combination of processing parameters was found.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present investigation addresses the overall and local mechanical performance of dissimilar joints of low carbon steel (CS) and stainless Steel (SS) thin sheets achieved by laser welding in case of heat source displacement from the weld gap centreline towards CS. Welding was performed on a Nd:YAG laser DY033 (3300 W) in a continuos wave (CW), keyhole mode. The tensile behavior of the joint different zones assessed by using a video-image based system (VIC-2D) reveals that the residual stress field, together with the positive difference in yield between the weld metal and the base materials protects the joint from being plastically deformed. The tensile loadings of flat transverse specimens generate the strain localization and failure in CS, far away from the weld.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrasonic waves interact in a complex manner with the metallurgical structure of austenitic weldments resulting in ambiguity when interpreting reflections and at times in misinterpretation of defect positions. In this work, current knowledge of the structure of austenitic welds is outlined, and the influence of this structure on the propagation of ultrasonic waves is reviewed. Using an established and highly accurate technique, data on velocity variations as a function of the angle between the direction of soundwave propagation and the axes of preferred grain orientation existing in such welds, are experimentally obtained. These results and existing theory are used to provide quantitative evidence of (i) anisotropy factors in austenitic welds, (ii) beam skewing effects for different wave modes and polarizations, and (iii) the extent of acoustic impedance mismatch between parent and weld metals. The existence of "false" indications is demonstrated, and suggestions are made into their nature. The effectiveness of conventional transverse wave techniques for inspecting artificial and real defects existing in austenitic weldments is experimentally investigated, the limitations are demonstrated, and possible solutions are proposed. The possibilities offered by the use of longitudinal angle probes for ultrasonic inspection of real and artificial defects existing in austenitic weldments are experimentally investigated, and parameters such as probe angle, frequency and scanning position are evaluated. Detailed work has been carried out on the interaction of ultrasound with fatigue and corrosion-fatigue cracks in the weld metal and the heat affected zones (HAZs) of 316 and 347 types of austenitic weldments, together with the influence of elastic compressive stresses, defect topography and defect geometry. Practical applications of all results are discussed, and more effective means of ultrasonic inspection of austenitic weldments are suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lead bismuth eutectic (LBE) is a possible coolant for fast reactors and targets in spallation neutron sources. Its low melting point, high evaporation point, good thermal conductivity, low reactivity, and good neutron yield make it a safe and high performance coolant in radiation environments. The disadvantage is that it is a corrosive medium for most steels and container materials. This study was performed to evaluate the corrosion behavior of the austenitic stainless steel D9 in oxygen controlled LBE. In order to predict the corrosion behavior of steel in this environment detailed analyses have to be performed on the oxide layers formed on these materials and various other relevant materials upon exposure to LBE. In this study the corrosion/oxidation of D9 stainless steel in LBE was investigated in great detail. The oxide layers formed were characterized using atomic force microscopy, magnetic force microscopy, nanoindentation, and scanning electron microscopy with wavelength-dispersive spectroscopy (WDS) to understand the corrosion and oxidation mechanisms of D9 stainless steel in contact with the LBE. What was previously believed to be a simple double oxide layer was identified here to consist of at least 4 different oxide layers. It was found that the inner most oxide layer takes over the grain structure of what used to be the bulk steel material while the outer oxide layer consists of freshly grown oxides with a columnar structure. These results lead to a descriptive model of how these oxide layers grow on this steel under the harsh environments encountered in these applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have explored the thermal stability of nanoscale growth twins in sputter-deposited 330 stainless-steel (SS) films by vacuum annealing up to 500 °C. In spite of an average twin spacing of only 4 nm in the as-deposited films, no detectable variation in the twin spacing or orientation of twin interfaces was observed after annealing. An increase in the average columnar grain size was observed after annealing. The hardness of 330 SS films increases after annealing, from 7 GPa for as-deposited films to around 8 GPa for annealed films, while the electrical resistivity decreases slightly after annealing. The changes in mechanical and electrical properties after annealing are interpreted in terms of the corresponding changes in the residual stress and microstructure of the films. © 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During this thesis work a coupled thermo-mechanical finite element model (FEM) was builtto simulate hot rolling in the blooming mill at Sandvik Materials Technology (SMT) inSandviken. The blooming mill is the first in a long line of processes that continuously or ingotcast ingots are subjected to before becoming finished products. The aim of this thesis work was twofold. The first was to create a parameterized finiteelement (FE) model of the blooming mill. The commercial FE software package MSCMarc/Mentat was used to create this model and the programing language Python was used toparameterize it. Second, two different pass schedules (A and B) were studied and comparedusing the model. The two pass series were evaluated with focus on their ability to healcentreline porosity, i.e. to close voids in the centre of the ingot. This evaluation was made by studying the hydrostatic stress (σm), the von Mises stress (σeq)and the plastic strain (εp) in the centre of the ingot. From these parameters the stress triaxiality(Tx) and the hydrostatic integration parameter (Gm) were calculated for each pass in bothseries using two different transportation times (30 and 150 s) from the furnace. The relationbetween Gm and an analytical parameter (Δ) was also studied. This parameter is the ratiobetween the mean height of the ingot and the contact length between the rolls and the ingot,which is useful as a rule of thumb to determine the homogeneity or penetration of strain for aspecific pass. The pass series designed with fewer passes (B), many with greater reduction, was shown toachieve better void closure theoretically. It was also shown that a temperature gradient, whichis the result of a longer holding time between the furnace and the blooming mill leads toimproved void closure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the investigation of the off-stoichiometry and site-occupancy of κ-carbide precipitates within an austenitic (γ), Fe-29.8Mn-7.7Al-1.3C (wt.%) alloy using a combination of atom probe tomography and density functional theory. The chemical composition of the κ-carbides as measured by atom probe tomography indicates depletion of both interstitial C and substitutional Al, in comparison to the ideal stoichiometric L′12 bulk perovskite. In this work we demonstrate that both these effects are coupled. The off-stoichiometric concentration of Al can, to a certain extent, be explained by strain caused by the κ/γ mismatch, which facilitates occupation of Al sites in κ-carbide by Mn atoms (MnγAl anti-site defects). The large anti-site concentrations observed by our experiments, however, can only be stabilized if there are C vacancies in the vicinity of the anti-site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work presents a detailed investigation of the microstructure characteristics of the (111) oriented grains in a Fe-30Ni-Nb austenitic model steel subjected to hot uniaxial compression at 925 °C at a strain rate of 1 s- 1. The above grains exhibited a tendency to split into deformation bands having alternating orientations and largely separated by transition regions comprising arrays of closely spaced, extended sub-boundaries collectively accommodating large misorientations across very small distances. On a fine scale, the (111) oriented grains typically contained a mix of "microbands" (MBs) closely aligned with {111} slip planes and those significantly deviated from these planes. The above deformation substructure thus markedly differed from the microstructure type, comprising strictly non-{111} aligned MBs, expected within such grains on the basis of the uniaxial compression experiments performed using aluminium. Both the crystallographic MBs and their non-crystallographic counterparts typically displayed similar misorientations and formed self-screening arrays characterized by systematically alternating misorientations. The crystallographic MBs were exclusively aligned with {111} slip planes containing slip systems whose sum of Schmid factors was the largest among the four available slip planes. The corresponding boundaries appeared to mainly display either a large twist or a large tilt component.