937 resultados para Asymptotic Normality
Resumo:
It is proved the algebraic equality between Jennrich's (1970) asymptotic$X^2$ test for equality of correlation matrices, and a Wald test statisticderived from Neudecker and Wesselman's (1990) expression of theasymptoticvariance matrix of the sample correlation matrix.
Resumo:
Structural equation models are widely used in economic, socialand behavioral studies to analyze linear interrelationships amongvariables, some of which may be unobservable or subject to measurementerror. Alternative estimation methods that exploit different distributionalassumptions are now available. The present paper deals with issues ofasymptotic statistical inferences, such as the evaluation of standarderrors of estimates and chi--square goodness--of--fit statistics,in the general context of mean and covariance structures. The emphasisis on drawing correct statistical inferences regardless of thedistribution of the data and the method of estimation employed. A(distribution--free) consistent estimate of $\Gamma$, the matrix ofasymptotic variances of the vector of sample second--order moments,will be used to compute robust standard errors and a robust chi--squaregoodness--of--fit squares. Simple modifications of the usual estimateof $\Gamma$ will also permit correct inferences in the case of multi--stage complex samples. We will also discuss the conditions under which,regardless of the distribution of the data, one can rely on the usual(non--robust) inferential statistics. Finally, a multivariate regressionmodel with errors--in--variables will be used to illustrate, by meansof simulated data, various theoretical aspects of the paper.
Resumo:
In moment structure analysis with nonnormal data, asymptotic valid inferences require the computation of a consistent (under general distributional assumptions) estimate of the matrix $\Gamma$ of asymptotic variances of sample second--order moments. Such a consistent estimate involves the fourth--order sample moments of the data. In practice, the use of fourth--order moments leads to computational burden and lack of robustness against small samples. In this paper we show that, under certain assumptions, correct asymptotic inferences can be attained when $\Gamma$ is replaced by a matrix $\Omega$ that involves only the second--order moments of the data. The present paper extends to the context of multi--sample analysis of second--order moment structures, results derived in the context of (simple--sample) covariance structure analysis (Satorra and Bentler, 1990). The results apply to a variety of estimation methods and general type of statistics. An example involving a test of equality of means under covariance restrictions illustrates theoretical aspects of the paper.
Resumo:
We extend to score, Wald and difference test statistics the scaled and adjusted corrections to goodness-of-fit test statistics developed in Satorra and Bentler (1988a,b). The theory is framed in the general context of multisample analysis of moment structures, under general conditions on the distribution of observable variables. Computational issues, as well as the relation of the scaled and corrected statistics to the asymptotic robust ones, is discussed. A Monte Carlo study illustrates thecomparative performance in finite samples of corrected score test statistics.
Resumo:
Consider the density of the solution $X(t,x)$ of a stochastic heat equation with small noise at a fixed $t\in [0,T]$, $x \in [0,1]$.In the paper we study the asymptotics of this density as the noise is vanishing. A kind of Taylor expansion in powers of the noiseparameter is obtained. The coefficients and the residue of the expansion are explicitly calculated.In order to obtain this result some type of exponential estimates of tail probabilities of the difference between the approximatingprocess and the limit one is proved. Also a suitable local integration by parts formula is developped.
Resumo:
A general asymptotic analysis of the Gunn effect in n-type GaAs under general boundary conditions for metal-semiconductor contacts is presented. Depending on the parameter values in the boundary condition of the injecting contact, different types of waves mediate the Gunn effect. The periodic current oscillation typical of the Gunn effect may be caused by moving charge-monopole accumulation or depletion layers, or by low- or high-field charge-dipole solitary waves. A new instability caused by multiple shedding of (low-field) dipole waves is found. In all cases the shape of the current oscillation is described in detail: we show the direct relationship between its major features (maxima, minima, plateaus, etc.) and several critical currents (which depend on the values of the contact parameters). Our results open the possibility of measuring contact parameters from the analysis of the shape of the current oscillation.
Resumo:
We investigate the spreading of 4He droplets on alkali-metal surfaces at zero temperature, within the frame of finite range density-functional theory. The equilibrium configurations of several 4HeN clusters and their asymptotic trend with increasing particle number N, which can be traced to the wetting behavior of the quantum fluid, are examined for nanoscopic droplets. We discuss the size effects inferring that the asymptotic properties of large droplets correspond to those of the prewetting film.
Resumo:
A general asymptotic analysis of the Gunn effect in n-type GaAs under general boundary conditions for metal-semiconductor contacts is presented. Depending on the parameter values in the boundary condition of the injecting contact, different types of waves mediate the Gunn effect. The periodic current oscillation typical of the Gunn effect may be caused by moving charge-monopole accumulation or depletion layers, or by low- or high-field charge-dipole solitary waves. A new instability caused by multiple shedding of (low-field) dipole waves is found. In all cases the shape of the current oscillation is described in detail: we show the direct relationship between its major features (maxima, minima, plateaus, etc.) and several critical currents (which depend on the values of the contact parameters). Our results open the possibility of measuring contact parameters from the analysis of the shape of the current oscillation.
Resumo:
In a recent paper, Komaki studied the second-order asymptotic properties of predictive distributions, using the Kullback-Leibler divergence as a loss function. He showed that estimative distributions with asymptotically efficient estimators can be improved by predictive distributions that do not belong to the model. The model is assumed to be a multidimensional curved exponential family. In this paper we generalize the result assuming as a loss function any f divergence. A relationship arises between alpha connections and optimal predictive distributions. In particular, using an alpha divergence to measure the goodness of a predictive distribution, the optimal shift of the estimate distribution is related to alpha-covariant derivatives. The expression that we obtain for the asymptotic risk is also useful to study the higher-order asymptotic properties of an estimator, in the mentioned class of loss functions.
Resumo:
We present a new asymptotic formula for the maximum static voltage in a simplified model for on-chip power distribution networks of array bonded integrated circuits. In this model the voltage is the solution of a Poisson equation in an infinite planar domain whose boundary is an array of circular pads of radius ", and we deal with the singular limit Ɛ → 0 case. In comparison with approximations that appear in the electronic engineering literature, our formula is more complete since we have obtained terms up to order Ɛ15. A procedure will be presented to compute all the successive terms, which can be interpreted as using multipole solutions of equations involving spatial derivatives of functions. To deduce the formula we use the method of matched asymptotic expansions. Our results are completely analytical and we make an extensive use of special functions and of the Gauss constant G
Resumo:
This paper investigates the asymptotic uniform power allocation capacity of frequency nonselective multiple-inputmultiple-output channels with fading correlation at either thetransmitter or the receiver. We consider the asymptotic situation,where the number of inputs and outputs increase without boundat the same rate. A simple uniparametric model for the fadingcorrelation function is proposed and the asymptotic capacity perantenna is derived in closed form. Although the proposed correlationmodel is introduced only for mathematical convenience, itis shown that its shape is very close to an exponentially decayingcorrelation function. The asymptotic expression obtained providesa simple and yet useful way of relating the actual fadingcorrelation to the asymptotic capacity per antenna from a purelyanalytical point of view. For example, the asymptotic expressionsindicate that fading correlation is more harmful when arising atthe side with less antennas. Moreover, fading correlation does notinfluence the rate of growth of the asymptotic capacity per receiveantenna with high Eb /N0.