866 resultados para Arabic gum
Resumo:
In recent years, the use of morphological decomposition strategies for Arabic Automatic Speech Recognition (ASR) has become increasingly popular. Systems trained on morphologically decomposed data are often used in combination with standard word-based approaches, and they have been found to yield consistent performance improvements. The present article contributes to this ongoing research endeavour by exploring the use of the 'Morphological Analysis and Disambiguation for Arabic' (MADA) tools for this purpose. System integration issues concerning language modelling and dictionary construction, as well as the estimation of pronunciation probabilities, are discussed. In particular, a novel solution for morpheme-to-word conversion is presented which makes use of an N-gram Statistical Machine Translation (SMT) approach. System performance is investigated within a multi-pass adaptation/combination framework. All the systems described in this paper are evaluated on an Arabic large vocabulary speech recognition task which includes both Broadcast News and Broadcast Conversation test data. It is shown that the use of MADA-based systems, in combination with word-based systems, can reduce the Word Error Rates by up to 8.1 relative. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
This paper extends n-gram graphone model pronunciation generation to use a mixture of such models. This technique is useful when pronunciation data is for a specific variant (or set of variants) of a language, such as for a dialect, and only a small amount of pronunciation dictionary training data for that specific variant is available. The performance of the interpolated n-gram graphone model is evaluated on Arabic phonetic pronunciation generation for words that can't be handled by the Buckwalter Morphological Analyser. The pronunciations produced are also used to train an Arabic broadcast audio speech recognition system. In both cases the interpolated graphone model leads to improved performance. Copyright © 2011 ISCA.
Resumo:
This paper describes recent improvements to the Cambridge Arabic Large Vocabulary Continuous Speech Recognition (LVCSR) Speech-to-Text (STT) system. It is shown that wordboundary context markers provide a powerful method to enhance graphemic systems by implicit phonetic information, improving the modelling capability of graphemic systems. In addition, a robust technique for full covariance Gaussian modelling in the Minimum Phone Error (MPE) training framework is introduced. This reduces the full covariance training to a diagonal covariance training problem, thereby solving related robustness problems. The full system results show that the combined use of these and other techniques within a multi-branch combination framework reduces the Word Error Rate (WER) of the complete system by up to 5.9% relative. Copyright © 2011 ISCA.
Resumo:
The influence of process variables (pea starch, guar gum and glycerol) on the viscosity (V), solubility (SOL), moisture content (MC), transparency (TR), Hunter parameters (L, a, and b), total color difference (ΔE), yellowness index (YI), and whiteness index (WI) of the pea starch based edible films was studied using three factors with three level Box–Behnken response surface design. The individual linear effect of pea starch, guar and glycerol was significant (p < 0.05) on all the responses. However, a value was only significantly (p < 0.05) affected by pea starch and guar gum in a positive and negative linear term, respectively. The effect of interaction of starch × glycerol was also significant (p < 0.05) on TR of edible films. Interaction between independent variables starch × guar gum had a significant impact on the b and YI values. The quadratic regression coefficient of pea starch showed a significant effect (p < 0.05) on V, MC, L, b, ΔE, YI, and WI; glycerol level on ΔE and WI; and guar gum on ΔE and SOL value. The results were analyzed by Pareto analysis of variance (ANOVA) and the second order polynomial models were developed from the experimental design with reliable and satisfactory fit with the corresponding experimental data and high coefficient of determination (R2) values (>0.93). Three-dimensional response surface plots were established to investigate the relationship between process variables and the responses. The optimized conditions with the goal of maximizing TR and minimizing SOL, YI and MC were 2.5 g pea starch, 25% glycerol and 0.3 g guar gum. Results revealed that pea starch/guar gum edible films with appropriate physical and optical characteristics can be effectively produced and successfully applied in the food packaging industry.