991 resultados para Antimicrobial agents
Resumo:
The objective of this study was to evaluate the microbial susceptibility to ß-lactams and metronidazole, and evaluate the production of ß-lactamases by microorganisms isolated from patients with chronic or aggressive periodontitis. The samples were obtained from 50 patients with periodontitis and microorganisms were isolated onto selective and nonselective culture media, identified by biochemical methods and tested for susceptibility to antimicrobial agents (amoxicillin, amoxicillin/clavulanate, cefoxitin, imipenem, metronidazole, penicillin G). The isolates were resistant to at least 1 mg/ml of any drug tested were evaluated to verify the production of ß-lactamases by the method of double layer (or biological) and chromogenic cephalosporin using nitrocefin. The results evidenced resistance to amoxicillin and penicillin G, while the susceptibility to association amoxicillin/clavulanate, imipenem and cefoxitin was widely disseminated among the organisms. Resistance to these drugs showed a clear correlation with the production of ß-lactamase in the majority of microbial groups.
Resumo:
Fundação do Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A total of 83 Actinobacillus pleuropneumoniae and 58 Actinobacillus porcitonsillarum strains collected from slaughtered pigs in Switzerland were screened for susceptibility to 20 antimicrobial agents by MIC determinations. Resistance to sulfamethoxazole, the combination sulfamethoxazole-trimethoprim, tiamulin, tilmicosin, tetracycline, penicillin and ampicillin were found. A few A. porcitonsillarum isolates displayed decreased susceptibility to enrofloxacin. PCR analysis revealed the presence of the sul2 gene in approximately one-fifth of the sulfonamide-resistant A. pleuropneumoniae and A. porcitonsillarum isolates. The tetracycline-resistant A. pleuropneumoniae harbored tet(B) and tet(H), whereas the tetracycline-resistant A. porcitonsillarum isolates harbored the tet(B) gene. The penicillin and ampicillin-resistant A. pleuropneumoniae and A. porcitonsillarum harbored the bla(ROB-1) gene.
Resumo:
Bacteria with antimicrobial resistance can be transferred from animals to humans and may compromise antimicrobial treatment in case of infection. To determine the antimicrobial resistance situation in bacteria from Swiss veal calves, faecal samples from 500 randomly selected calves originating from 129 farms were collected at four big slaughterhouses. Samples were cultured for Escherichia coli, Enterococcus sp. and Campylobacter sp. and isolated strains were tested for antimicrobial susceptibility to selected antimicrobial agents by the minimal inhibitory concentration technique using the broth microdilution method. From 100 farms, data on farm management, animal husbandry and antimicrobial treatments of the calves were collected by questionnaire. Risk factors associated with antimicrobial resistance were identified by logistic regression. In total, 467 E. coli, 413 Enterococcus sp. and 202 Campylobacter sp. were isolated. Of those, 68.7%, 98.7% and 67.8%, respectively, were resistant to at least one of the tested antimicrobial agents. Resistance was mainly observed to antimicrobials frequently used in farm animals. Prevalence of resistance to antimicrobials important for human treatment was generally low. However, a rather high number of quinupristin/dalfopristin-resistant Enterococcus faecium and ciprofloxacin-resistant Campylobacter sp. were detected. External calf purchase, large finishing groups, feeding of milk by-products and administration of antimicrobials through feed upon arrival of the animals on the farm significantly increased the risk of antimicrobial resistance at farm level. Participation in a quality assurance programme and injection of a macrolide upon arrival of the animals on the farm had a protective effect. The present study showed that veal calves may serve as a reservoir for resistant bacteria. To ensure food safety, veal calves should be included in the national monitoring programme for antimicrobial resistance in farm animals. By improving farm management and calf husbandry the prevalence of resistance may be reduced.
Resumo:
Cefotaxime has little antimicrobial activity in vitro against most strains of enterococci, as measured by conventional MICs and MBCs. However, the MICs of cefotaxime against many enterococci are markedly reduced by the addition of serum to the test medium. To assess the relevance of this observation in vivo, we examined the efficacy of cefotaxime in experimental Streptococcus faecalis endocarditis. Since response to antimicrobial agents may vary with the degree of vegetation development, therapeutic efficacy was assessed both in rabbits with newly formed vegetations and in rabbits with well-developed endocardial lesions. Peak serum levels of cefotaxime (50.1 +/- 20.0 micrograms/ml) exceeded the MIC in medium supplemented with serum (4 micrograms/ml), but not in Mueller-Hinton broth alone (greater than 64 micrograms/ml). After 4 days of therapy, animals with newly formed lesions (therapy initiated 1 h after infection, transvalvular catheters removed) had lower mean vegetation bacterial titers than did untreated controls. Among animals with mature vegetations (therapy initiated 12 h after infection, catheters indwelling), the rate of mortality was significantly reduced by cefotaxime therapy. However, no difference in vegetation titers was observed. Thus, cefotaxime demonstrated antienterococcal activity within newly formed vegetations, but did not inhibit bacterial proliferation within well-established vegetations.
Resumo:
The in vitro activity of gentamicin was compared with its therapeutic efficacy in rabbits with Streptococcus faecalis endocarditis. The test strain was resistant to gentamicin as measured by MICs and MBCs determined in Mueller-Hinton broth alone or in broth supplemented with 50% rabbit serum. Gentamicin also failed to manifest anti-enterococcal activity when evaluated by time-kill studies in broth. However, the addition of serum to the medium did enhance the activity of gentamicin. In the therapy of experimental endocarditis, gentamicin used alone demonstrated anti-enterococcal activity equivalent to that of ampicillin used alone. Vegetation titers in animals treated with gentamicin alone were lower than those of untreated controls (P less than 0.01) and comparable to those in animals treated with ampicillin alone. Thus, gentamicin demonstrated anti-enterococcal activity in vivo despite the resistance observed in vitro, as measured by conventional assays to determine MICs and MBCs.
Resumo:
Meat and meat products can be contaminated with different species of bacteria resistant to various antimicrobials. The human health risk of a type of meat or meat product carry by emerging antimicrobial resistance depends on (i) the prevalence of contamination with resistant bacteria, (ii) the human health consequences of an infection with a specific bacterium resistant to a specific antimicrobial and (iii) the consumption volume of a specific product. The objective of this study was to compare the risk for consumers arising from their exposure to antibiotic resistant bacteria from meat of four different types (chicken, pork, beef and veal), distributed in four different product categories (fresh meat, frozen meat, dried raw meat products and heat-treated meat products). A semi-quantitative risk assessment model, evaluating each food chain step, was built in order to get an estimated score for the prevalence of Campylobacter spp., Enterococcus spp. and Escherichia coli in each product category. To assess human health impact, nine combinations of bacterial species and antimicrobial agents were considered based on a published risk profile. The combination of the prevalence at retail, the human health impact and the amount of meat or product consumed, provided the relative proportion of total risk attributed to each category of product, resulting in a high, medium or low human health risk. According to the results of the model, chicken (mostly fresh and frozen meat) contributed 6.7% of the overall risk in the highest category and pork (mostly fresh meat and dried raw meat products) contributed 4.0%. The contribution of beef and veal was of 0.4% and 0.1% respectively. The results were tested and discussed for single parameter changes of the model. This risk assessment was a useful tool for targeting antimicrobial resistance monitoring to those meat product categories where the expected risk for public health was greater.
Resumo:
Antimicrobial susceptibility testing was performed on a total of 581 clinical Escherichia coli isolates from diarrhea and edema disease in pigs, from acute mastitis in dairy cattle, from urinary tract infections in dogs and cats, and from septicemia in laying hens collected in Switzerland between 1999 and 2001. Among the 16 antimicrobial agents tested, resistance was most frequent for sulfonamides, tetracycline, and streptomycin. Isolates from swine presented significantly more resistance than those from the other animal species. The distribution of the resistance determinants for sulfonamides, tetracycline, and streptomycin was assessed by hybridization and PCR in resistant isolates. Significant differences in the distribution of resistance determinants for tetracycline (tetA, tetB) and sulfonamides (sulII) were observed between the isolates from swine and those from the other species. Resistance to sulfonamides could not be explained by known resistance mechanisms in more than a quarter of the sulfonamide-resistant and sulfonamide-intermediate isolates from swine, dogs and cats. This finding suggests that one or several new resistance mechanisms for sulfonamides may be widespread among E. coli isolates from these animal species. The integrase gene (intI) from class I integrons was detected in a large proportion of resistant isolates in association with the sulI and aadA genes, thus demonstrating the importance of integrons in the epidemiology of resistance in clinical E. coli isolates from animals.
Resumo:
Many Member States of the European Union (EU) currently monitor antimicrobial resistance in zoonotic agents, including Salmonella and Campylobacter. According to Directive 2003/99/EC, Member States shall ensure that the monitoring provides comparable data on the occurrence of antimicrobial resistance. The European Commission asked the European Food Safety Authority to prepare detailed specifications for harmonised schemes for monitoring antimicrobial resistance. The objective of these specifications is to lay down provisions for a monitoring and reporting scheme for Salmonella in fowl (Gallus gallus), turkeys and pigs, and for Campylobacter jejuni and Campylobacter coli in broiler chickens. The current specifications are considered to be a first step towards a gradual implementation of comprehensive antimicrobial resistance monitoring at the EU level. These specifications propose to test a common set of antimicrobial agents against available cut-off values and a specified concentration range to determine the susceptibility of Salmonella and Campylobacter. Using isolates collected through programmes in which the sampling frame covers all epidemiological units of the national production, the target number of Salmonella isolates to be included in the antimicrobial resistance monitoring per Member State per year is 170 for each study population (i.e., laying hens, broilers, turkeys and slaughter pigs). The target number of Campylobacter isolates to be included in the antimicrobial resistance monitoring per Member State per year is 170 for each study population (i.e., broilers). The results of the antimicrobial resistance monitoring are assessed and reported in the yearly national report on trends and sources of zoonoses, zoonotic agents and antimicrobial resistance.
Resumo:
In order to identify optimal therapy for children with bacterial pneumonia, Pakistan's ARI Program, in collaboration with the National Institute of Health (NIH), Islamabad, undertook a national surveillance of antimicrobial resistance in S. pneumoniae and H. influenzae. The project was carried out at selected urban and peripheral sites in 6 different regions of Pakistan, in 1991–92. Nasopharyngeal (NP) specimens and blood cultures were obtained from children with pneumonia diagnosed in the outpatient clinic of participating facilities. Organisms were isolated by local hospital laboratories and sent to NIH for confirmation, serotyping and antimicrobial susceptibility testing. Following were the aims of the study (i) to determine the antimicrobial resistance patterns of S. pneumoniae and H. influenzae in children aged 2–59 months; (ii) to determine the ability of selected laboratories to identify and effectively transport isolates of S. pneumoniae and H. influenzae cultured from nasopharyngeal and blood specimens; (iii) to validate the comparability of resistance patterns for nasopharyngeal and blood isolates of S. pneumoniae and H. influenzae from children with pneumonia; and (iv) to examine the effect of drug resistance and laboratory error on the cost of effectively treating children with ARI. ^ A total of 1293 children with ARI were included in the study: 969 (75%) from urban areas and 324 (25%) from rural parts of the country. Of 1293, there were 786 (61%) male and 507 (39%) female children. The resistance rate of S. pneumoniae to various antibiotics among the urban children with ARI was: TMP/SMX (62%); chloramphenicol (23%); penicillin (5%); tetracycline (16%); and ampicillin/amoxicillin (0%). The rates of resistance of H. influenzae were higher than S. pneumoniae: TMP/SMX (85%); chloramphenicol (62%); penicillin (59%); ampicillin/amoxicillin (46%); and tetracycline (100%). There were similar rates of resistance to each antimicrobial agent among isolates from the rural children. ^ Of a total 614 specimens that were tested for antimicrobial susceptibility, 432 (70.4%) were resistant to TMP/SMX and 93 (15.2%) were resistant to antimicrobial agents other than TMP/SMX viz. ampicillin/amoxicillin, chloramphenicol, penicillin, and tetracycline. ^ The sensitivity and positive predictive value of peripheral laboratories for H. influenzae were 99% and 65%, respectively. Similarly, the sensitivity and positive predictive value of peripheral laboratory tests compared to gold standard i.e. NIH laboratory, for S. pneumoniae were 99% and 54%, respectively. ^ The sensitivity and positive predictive value of nasopharyngeal specimens compared to blood cultures (gold standard), isolated by the peripheral laboratories, for H. influenzae were 88% and 11%, and for S. pneumoniae 92% and 39%, respectively. (Abstract shortened by UMI.)^
Resumo:
The in vitro activity of the novel antimicrobial peptide dendrimer G3KL was evaluated against 32 Acinetobacter baumannii (including 10 OXA-23, 7 OXA-24, and 11 OXA-58 carbapenemase producers) and 35 Pseudomonas aeruginosa (including 18 VIM and 3 IMP carbapenemase producers) strains and compared to the activities of standard antibiotics. Overall, both species collections showed MIC50/90 values of 8/8 μg/ml and minimum bactericidal concentrations at which 50% or 90% of strains tested are killed (MBC50/90) of 8/8 μg/ml. G3KL is a promising molecule with antibacterial activity against multidrug-resistant and extensively drug-resistant A. baumannii and P. aeruginosa isolates.
Resumo:
Moraxella catarrhalis is a common pathogen of the human respiratory tract. Multidrug efflux pumps play a major role in antibiotic resistance and virulence in many Gram-negative organisms. In the present study, the role of the AcrAB-OprM efflux pump in antibiotic resistance was investigated by constructing mutants that lack the acrA, acrB, and oprM genes in M. catarrhalis strain O35E. We observed a moderate (1.5-fold) decrease in the MICs of amoxicillin and cefotaxime and a marked (4.7-fold) decrease in the MICs of clarithromycin for acrA, acrB, and oprM mutants in comparison with the wild-type O35E strain. Exposure of the M. catarrhalis strains O35E and 300 to amoxicillin triggered an increased transcription of all AcrAB-OprM pump genes, and exposure of strains O35E, 300, and 415 to clarithromycin enhanced the expression of acrA and oprM mRNA. Inactivation of the AcrAB-OprM efflux pump genes demonstrated a decreased ability to invade epithelial cells compared to the parental strain, suggesting that acrA, acrB, and oprM are required for efficient invasion of human pharyngeal epithelial cells. Cold shock increases the expression of AcrAB-OprM efflux pump genes in all three M. catarrhalis strains tested. Increased expression of AcrAB-OprM pump genes after cold shock leads to a lower accumulation of Hoechst 33342 (H33342), a substrate of AcrAB-OprM efflux pumps, indicating that cold shock results in increased efflux activity. In conclusion, the AcrAB-OprM efflux pump appears to play a role in the antibiotic resistance and virulence of M. catarrhalis and is involved in the cold shock response.
Resumo:
This study evaluates the effect of a specially designed, physician-oriented handbook of antimicrobial use on the prescribing patterns of a group of fifty doctors at a university hospital. Data were evaluated over a peroid of one-and-one-half years, before and after the distribution of the handbook. For the purposes of this study, antimicrobial therapy was classified: (1) inappropriate if it violated one of a number of recognized principles of antimicrobial therapy, (2) appropriate if it agreed with specific recommendations or alternatives given in the distributed reference handbook, and (3) acceptable if it was neither inappropriate nor appropriate as defined by the handbook. An initial survey of antimicrobial prescribing patterns was made. Five months later the handbook was distributed and a two-week orientation program, consisting of the distribution and promotion of the problem-oriented, pocket-size handbook of appropriate antimicrobial therapy, was conducted. The handbook, which was developed by the authors and reviewed and approved by a panel of infectious disease specialists, presented guidelines for appropriate and efficacious usage of antimicrobial agents as most currently accepted in common clinical infections. Subsequent surveys were then conducted two weeks, three months, and six months after distribution of the handbook. A statistically significant difference (p < 0.01) in antimicrobial prescribing patterns was noted between the survey conducted two weeks after the introduction of the handbook and the other surveys. In this survey, while therapy classified inappropriate decreased from 44% to 28%, therapy appropriate as recommended increased from 31% to 53%. The findings of this study demonstrate that the introduction and promotion of the handbook decreases abuse and increases proper use of antimicrobial therapy, although the effect is sustainable for only a short duration--no longer than three months. These results indicate the need for a vigorous, updated program to achieve and maintain current appropriate antibotic therapy in clinical medicine. ^
Resumo:
Objectives Effective skin antisepsis and disinfection of medical devices are key factors in preventing many healthcare-acquired infections associated with skin microorganisms, particularly Staphylococcus epidermidis. The aim of this study was to investigate the antimicrobial efficacy of chlorhexidine digluconate (CHG), a widely used antiseptic in clinical practice, alone and in combination with tea tree oil (TTO), eucalyptus oil (EO) and thymol against planktonic and biofilm cultures of S. epidermidis. Methods Antimicrobial susceptibility assays against S. epidermidis in a suspension and in a biofilm mode of growth were performed with broth microdilution and ATP bioluminescence methods, respectively. Synergy of antimicrobial agents was evaluated with the chequerboard method. Results CHG exhibited antimicrobial activity against S. epidermidis in both suspension and biofilm (MIC 2–8 mg/L). Of the essential oils thymol exhibited the greatest antimicrobial efficacy (0.5–4 g/L) against S. epidermidis in suspension and biofilm followed by TTO (2–16 g/L) and EO (4–64 g/L). MICs of CHG and EO were reduced against S. epidermidis biofilm when in combination (MIC of 8 reduced to 0.25–1 mg/L and MIC of 32–64 reduced to 4 g/L for CHG and EO, respectively). Furthermore, the combination of EO with CHG demonstrated synergistic activity against S. epidermidis biofilm with a fractional inhibitory concentration index of <0.5. Conclusions The results from this study suggest that there may be a role for essential oils, in particular EO, for improved skin antisepsis when combined with CHG.
Resumo:
Biopharmaceuticals are finding wide applications in the management of diverse disease conditions. Pulmonary delivery of proteins may constitute an effective and efficient non-invasive alternative to parenteral delivery, which is currently the main route of administration of biopharmaceutical drugs. A particular area, in which pulmonary delivery of peptides and proteins may find ready application, is in the local delivery of antimicrobial peptides and proteins to the airway, a measure that could potentially bring about improvements to currently available antipseudomonal therapies. This thesis has therefore sought to develop inhalable antimicrobial proteins in combination with antibiotics that have particularly good antimicrobial activity against Pseudomonas aeruginosa infections in the respiratory tract of people with cystic fibrosis (CF). Through process optimisation, a suitable spray drying method was developed and used for the preparation of active, inhalable dry powder formulations of the antimicrobial protein, lactoferrin, and aminoglycosides (tobramycin and gentamicin). The physicochemical properties, aerosolisation performance and the antibacterial properties of the various spray-dried formulations were assessed. In addition, a relevant in vitro cellular model was employed to investigate the potential cytotoxic and pro-inflammatory effects of the various formulations on four bronchial human epithelial cells together with their effectiveness at reducing bacterial colonies when administered on to biofilm co-cultured on the epithelial cells. It was found that following spray drying the particles obtained were mostly spherical, amorphous and possessed suitable aerosolisation characteristics. The various spray-dried antimicrobial proteins (lactoferrin or apo lactoferrin) and co-spray dried combinations of the proteins and aminoglycosides were found to exhibit bactericidal activity against planktonic and biofilms of P. aeruginosa. In general, the spray drying process was found not to significantly affect the antimicrobial activities of the protein. Treatment of the different bronchial epithelial cell lines with the antimicrobial formulations showed that the various formulations were non-toxic and that the co-spray dried combinations significantly reduced established P. aeruginosa biofilms on the four bronchial epithelial cells. Overall, the results from this thesis demonstrates that spray drying could potentially be employed to prepare inhalable antimicrobial agents comprised of proteins and antibiotics. These new combinations of proteins and aminoglycosides has promising applications in the management of P. aeruginosa in the airway of cystic fibrosis patients.