991 resultados para Animals, Newborn


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the problem of monitoring and controlling the position of herd animals, and view animals as networked agents with natural mobility but not strictly controllable. By exploiting knowledge of individual and herd behavior we would like to apply a vast body of theory in robotics and motion planning to achieving the constrained motion of a herd. In this paper we describe the concept of a virtual fence which applies a stimulus to an animal as a function of its pose with respect to the fenceline. Multiple fence lines can define a region, and the fences can be static or dynamic. The fence algorithm is implemented by a small position-aware computer device worn by the animal, which we refer to as a Smart Collar.We describe a herd-animal simulator, the Smart Collar hardware and algorithms for tracking and controlling animals as well as the results of on-farm experiments with up to ten Smart Collars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent claims of equivalence of animal and human reasoning are evaluated and a study of avian cognition serves as an exemplar of weaknesses in these arguments. It is argued that current research into neurobiological cognition lacks theoretical breadth to substantiate comparative analyses of cognitive function. Evaluation of a greater range of theoretical explanations is needed to verify claims of equivalence in animal and human cognition. We conclude by exemplifying how the notion of affordances in multi-scale dynamics can capture behavior attributed to processes of analogical and inferential reasoning in animals and humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The coral reefs around the world may be likened to canaries down the mineshaft of global warming. These sensitive plant-like animals have evolved for life in tropical seas. Their needs are quite specific – not too cold, not too hot. A rise of as little as one degree Celsius is enough to cause some bleaching of these colourful jewels of the sea. Many climate models indicate we can expect sea temperature increases of between two and six degrees Celsius. Research - such as that detailed in a 2004 report by the University of Queensland’s Centre for Marine Studies – indicates that by the year 2050 most of the worlds major reef systems will be dead. Many of us have heard this kind of information, but it remains difficult to comprehend. It’s almost impossible to imagine the death of the Great Barrier Reef. Some six to nine thousand years old and visible from space, it is the world’s largest structure created by living organisms. Yet whilst it is hard to believe, this gentle, sensitive giant is at grave risk because it cannot adapt quickly enough to the changes in the environment. This cluster of fluffy felt brain coral sculptures are connected in real time to temperature data collected by monitoring stations within the Great Barrier Reef, that form part of the Australian Institute of Marine Science’s Great Barrier Reed Ocean Observing System. These corals display illumination patterns showing changes in sea temperature at Heron Reef, one of the 2,900 reefs that comprise the Great Barrier Reef. Their spectrum of colour ranges from cool hues, through warm tones to bright white when temperatures exceed those that tropical corals are able to tolerate over sustained periods. The Flower Animals also blush in colour and make sound when people come within close proximity. In a reef, fishes and other creatures generate significant amounts of sound. These cacophonies are considered an indicator of reef health, and are used by reef fish to determine where they can best live and forage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chlamydia pneumoniae is a common human and animal pathogen associated with a wide range of diseases. Since the first isolation of C. pneumoniae TWAR in 1965, all human isolates have been essentially clonal, providing little evolutionary insight. To address this gap, we investigated the genetic diversity of 30 isolates from diverse geographical locations, from both human and animal origin (amphibian, reptilian, equine and marsupial). Based on the level of variation that we observed at 23 discreet gene loci, it was clearly evident that the animal isolates were more diverse than the isolates of human origin. Furthermore, we show that C. pneumoniae isolates could be grouped into five major genotypes, A-E, with A, B, D and E genotypes linked by geographical location, whereas genotype C was found across multiple continents. Our evidence strongly supports two separate animal-to-human cross species transfer events in the evolutionary history of this pathogen. The C. pneumoniae human genotype identified in the USA, Canada, Taiwan, Iran, Japan, Korea and Australia (non- Indigenous) most likely originated from a single amphibian or reptilian lineage, which appears to have been previously geographically widespread. We identified a separate human lineage present in two Australian Indigenous isolates (independent geographical locations). This lineage is distinct and is present in Australian amphibians as well as a range of Australian marsupials.