873 resultados para Animais - Habitat


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organismal survival in marine habitats is often positively correlated with habitat structural complexity at local (within-patch) spatial scales. Far less is known, however, about how marine habitat structure at the landscape scale influences predation and other ecological processes, and in particular, how these processes are dictated by the interactive effect of habitat structure at local and landscape scales. The relationship between survival and habitat structure can be modeled with the habitat-survival function (HSF), which often takes on linear, hyperbolic, or sigmoid forms. We used tethering experiments to determine how seagrass landscape structure influenced the HSF for juvenile blue crabs Callinectes sapidus Rathbun in Back Sound, North Carolina, USA. Crabs were tethered in artificial seagrass plots of 7 different shoot densities embedded within small (1 – 3 m2) or large (>100 m2) seagrass patches (October 1999), and within 10 × 10 m landscapes containing patchy (<50% cover) or continuous (>90% cover) seagrass (July 2000). Overall, crab survival was higher in small than in large patches, and was higher in patchy than in continuous seagrass. The HSF was hyperbolic in large patches and in continuous seagrass, indicating that at low levels of habitat structure, relatively small increases in structure resulted in substantial increases in juvenile blue crab survival. However, the HSF was linear in small seagrass patches in 1999 and was parabolic in patchy seagrass in 2000. A sigmoid HSF, in which a threshold level of seagrass structure is required for crab survival, was never observed. Patchy seagrass landscapes are valuable refuges for juvenile blue crabs, and the effects of seagrass structural complexity on crab survival can only be fully understood when habitat structure at larger scales is considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the past four decades, the state of Hawaii has developed a system of eleven Marine Life Conservation Districts (MLCDs) to conserve and replenish marine resources around the state. Initially established to provide opportunities for public interaction with the marine environment, these MLCDs vary in size, habitat quality, and management regimes, providing an excellent opportunity to test hypotheses concerning marine protected area (MPA) design and function using multiple discreet sampling units. NOAA/NOS/NCCOS/Center for Coastal Monitoring and Assessment’s Biogeography Team developed digital benthic habitat maps for all MLCD and adjacent habitats. These maps were used to evaluate the efficacy of existing MLCDs for biodiversity conservation and fisheries replenishment, using a spatially explicit stratified random sampling design. Coupling the distribution of habitats and species habitat affinities using GIS technology elucidates species habitat utilization patterns at scales that are commensurate with ecosystem processes and is useful in defining essential fish habitat and biologically relevant boundaries for MPAs. Analysis of benthic cover validated the a priori classification of habitat types and provided justification for using these habitat strata to conduct stratified random sampling and analyses of fish habitat utilization patterns. Results showed that the abundance and distribution of species and assemblages exhibited strong correlations with habitat types. Fish assemblages in the colonized and uncolonized hardbottom habitats were found to be most similar among all of the habitat types. Much of the macroalgae habitat sampled was macroalgae growing on hard substrate, and as a result showed similarities with the other hardbottom assemblages. The fish assemblages in the sand habitats were highly variable but distinct from the other habitat types. Management regime also played an important role in the abundance and distribution of fish assemblages. MLCDs had higher values for most fish assemblage characteristics (e.g. biomass, size, diversity) compared with adjacent fished areas and Fisheries Management Areas (FMAs) across all habitat types. In addition, apex predators and other targeted resources species were more abundant and larger in the MLCDs, illustrating the effectiveness of these closures in conserving fish populations. Habitat complexity, quality, size and level of protection from fishing were important determinates of MLCD effectiveness with respect to their associated fish assemblages. (PDF contains 217 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

(PDF contains 3 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This document, Guidance for Benthic Habitat Mapping: An Aerial Photographic Approach, describes proven technology that can be applied in an operational manner by state-level scientists and resource managers. This information is based on the experience gained by NOAA Coastal Services Center staff and state-level cooperators in the production of a series of benthic habitat data sets in Delaware, Florida, Maine, Massachusetts, New York, Rhode Island, the Virgin Islands, and Washington, as well as during Center-sponsored workshops on coral remote sensing and seagrass and aquatic habitat assessment. (PDF contains 39 pages) The original benthic habitat document, NOAA Coastal Change Analysis Program (C-CAP): Guidance for Regional Implementation (Dobson et al.), was published by the Department of Commerce in 1995. That document summarized procedures that were to be used by scientists throughout the United States to develop consistent and reliable coastal land cover and benthic habitat information. Advances in technology and new methodologies for generating these data created the need for this updated report, which builds upon the foundation of its predecessor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seagrass communities are among the richest and most productive, photoautotrophic coastal systems in the world. They protect and improve water quality, provide shoreline stabilization, and are important habitats for an array of fish, birds, and other wildlife. Hence, much can be gained by protecting and restoring these important living resources. Human’s impact on these vital resources from population growth, pollution, and physical damage from boating and other activities can disrupt the growth of these seagrasses communities and have devastating effects on their health and vitality. Inventory and monitoring are required to determine the dynamics of seagrasses and devise better protection and restoration for these rich resources. The purpose of this seagrass workshop, sponsored by NOAA’s CSC , USGS, and FMRI, was to move toward greater objectivity and accuracy in seagrass mapping and monitoring. This workshop helped foster interaction and communication among seagrass professionals. In order to begin the process of determining the best uniform mapping process for the biological research community. Increasing such awareness among the seagrass and management communities, it is hoped that an improved understanding of the monitoring and mapping process will lead to more effective and efficient preservation os submerged aquatic vegetation. (PDF contains 20 pages)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Habitat mapping and characterization has been defined as a high-priority management issue for the Olympic Coast National Marine Sanctuary (OCNMS), especially for poorly known deep-sea habitats that may be sensitive to anthropogenic disturbance. As a result, a team of scientists from OCNMS, National Centers for Coastal Ocean Science (NCCOS), and other partnering institutions initiated a series of surveys to assess the distribution of deep-sea coral/sponge assemblages within the sanctuary and to look for evidence of potential anthropogenic impacts in these critical habitats. Initial results indicated that remotely delineating areas of hard bottom substrate through acoustic sensing could be a useful tool to increase the efficiency and success of subsequent ROV-based surveys of the associated deep-sea fauna. Accordingly, side scan sonar surveys were conducted in May 2004, June 2005, and April 2006 aboard the NOAA Ship McArthur II to: (1) obtain additional imagery of the seafloor for broader habitat-mapping coverage of sanctuary waters, and (2) help delineate suitable deep-sea coral/sponge habitat, in areas of both high and low commercial-fishing activities, to serve as sites for surveying-in more detail using an ROV on subsequent cruises. Several regions of the sea floor throughout the OCNMS were surveyed and mosaicked at 1-meter pixel resolution. Imagery from the side scan sonar mapping efforts was integrated with other complementary data from a towed camera sled, ROVs, sedimentary samples, and bathymetry records to describe geological and biological (where possible) aspects of habitat. Using a hierarchical deep-water marine benthic classification scheme (Greene et al. 1999), we created a preliminary map of various habitat polygon features for use in a geographical information system (GIS). This report provides a description of the mapping and groundtruthing efforts as well as results of the image classification procedure for each of the areas surveyed. (PDF contains 60 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With elevating interest to establish conservation efforts for groundfish stocks and continued scrutiny over the value of marine protected areas along the west coast, the importance of enhancing our knowledge of seabed characteristics through mapping activities is becoming increasingly more important, especially in a timely manner. Shortly after the inception of the Seabed Mapping Initiative instituted with the US Geological Survey (USGS), the National Marine Sanctuary Program (NMSP) assembled a panel of habitat mapping experts. They determined that the status of existing data sets and future data acquisition needs varied widely among the individual sanctuaries and that more detailed site assessments were needed to better prioritize mapping efforts and outline an overall joint strategy. To assist with that specific effort and provide pertinent information for the Olympic Coast National Marine Sanctuary’s (OCNMS) Management Plan Review, this report summarizes the mapping efforts that have taken place at the site to date; calculates a timeframe for completion of baseline mapping efforts when operating under current data acquisition limitations; describes an optimized survey strategy to dramatically reduce the required time to complete baseline surveying; and provides estimates for the needed vessel sea-days (DAS) to accomplish baseline survey completion within a 2, 5 and 10 year timeframe. (PDF contains 38 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Olympic Coast National Marine Sanctuary (OCNMS) continues to invest significant resources into seafloor mapping activities along Washington’s outer coast (Intelmann and Cochrane 2006; Intelmann et al. 2006; Intelmann 2006). Results from these annual mapping efforts offer a snapshot of current ground conditions, help to guide research and management activities, and provide a baseline for assessing the impacts of various threats to important habitat. During the months of August 2004 and May and July 2005, we used side scan sonar to image several regions of the sea floor in the northern OCNMS, and the data were mosaicked at 1-meter pixel resolution. Video from a towed camera sled, bathymetry data, sedimentary samples and side scan sonar mapping were integrated to describe geological and biological aspects of habitat. Polygon features were created and attributed with a hierarchical deep-water marine benthic classification scheme (Greene et al. 1999). For three small areas that were mapped with both side scan sonar and multibeam echosounder, we made a comparison of output from the classified images indicating little difference in results between the two methods. With these considerations, backscatter derived from multibeam bathymetry is currently a costefficient and safe method for seabed imaging in the shallow (<30 meters) rocky waters of OCNMS. The image quality is sufficient for classification purposes, the associated depths provide further descriptive value and risks to gear are minimized. In shallow waters (<30 meters) which do not have a high incidence of dangerous rock pinnacles, a towed multi-beam side scan sonar could provide a better option for obtaining seafloor imagery due to the high rate of acquisition speed and high image quality, however the high probability of losing or damaging such a costly system when deployed as a towed configuration in the extremely rugose nearshore zones within OCNMS is a financially risky proposition. The development of newer technologies such as intereferometric multibeam systems and bathymetric side scan systems could also provide great potential for mapping these nearshore rocky areas as they allow for high speed data acquisition, produce precisely geo-referenced side scan imagery to bathymetry, and do not experience the angular depth dependency associated with multibeam echosounders allowing larger range scales to be used in shallower water. As such, further investigation of these systems is needed to assess their efficiency and utility in these environments compared to traditional side scan sonar and multibeam bathymetry. (PDF contains 43 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In September 2002, side scan sonar was used to image a portion of the sea floor in the northern OCNMS and was mosaiced at 1-meter pixel resolution using 100 kHz data collected at 300-meter range scale. Video from a remotely-operated vehicle (ROV), bathymetry data, sedimentary samples, and sonar mapping have been integrated to describe geological and biological aspects of habitat and polygon features have been created and attributed with a hierarchical deep-water marine benthic classification scheme (Greene et al. 1999). The data can be used with geographic information system (GIS) software for display, query, and analysis. Textural analysis of the sonar images provided a relatively automated method for delineating substrate into three broad classes representing soft, mixed sediment, and hard bottom. Microhabitat and presence of certain biologic attributes were also populated into the polygon features, but strictly limited to areas where video groundtruthing occurred. Further groundtruthing work in specific areas would improve confidence in the classified habitat map. (PDF contains 22 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This compendium presents information on the life history, diet, and abundance and distribution of 46 of the more abundant juvenile and small resident fish species, and data on three species of seagrasses in Florida Bay, Everglades National Park. Abundance and distribution of fish data were derived from three sampling schemes: (1) an otter trawl in basins (1984–1985, 1994–2001), (2) a surface trawl in basins (1984–1985), and (3) a surface trawl in channels (1984–1985). Results from surface trawling only included pelagic species. Collections made with an otter trawl in basins on a bi-monthly basis were emphasized. Nonparametric statistics were used to test spatial and temporal differences in the abundance of species and seagrasses. Fish species accounts were presented in four sections – Life history, Diet, Abundance and distribution, and Length-frequency distributions. Although Florida Bay is a subtropical estuary, the majority of fish species (76%) had warm-temperate affinities; i.e., only 24% were solely tropical species. The five most abundant species collected, in descending order, by (1) otter trawl in basins were: Eucinostomus gula, Lucania parva, Anchoa mitchilli, Lagodon rhomboides, and Syngnathus scovelli; (2) surface trawl in basins were: Hyporhamphus unifasciatus, Strongylura notata, Chriodorus atherinoides, Anchoa hepsetus, and Atherinomorus stipes; (3) surface trawl in channels were: Hypoatherina harringtonensis, A. stipes, A. mitchelli, H. unifasciatus, and C. atherinoides. (PDF file contains 219 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Groupers are important components of commercial and recreational fisheries. Current methods of diver-based grouper census surveys could potentially benefit from development of remotely sensed methods of seabed classification. The goal of the present study was to determine if areas of high grouper abundance have characteristic acoustic signatures. A commercial acoustic seabed mapping system, QTC View Series V, was used to survey an area near Carysfort Reef, Florida Keys. Acoustic data were clustered using QTC IMPACT software, resulting in three main acoustic classes covering 94% of the area surveyed. Diver-based data indicate that one of the acoustic classes corresponded to hard substrate and the other two represented sediment. A new measurement of seabed heterogeneity, designated acoustic variability, was also computed from the acoustic survey data in order to more fully characterize the acoustic response (i.e., the signature) of the seafloor. When compared with diver-based grouper census data, both acoustic classification and acoustic variability were significantly different at sites with and without groupers. Sites with groupers were characterized by hard bottom substrate and high acoustic variability. Thus, the acoustic signature of a site, as measured by acoustic classification or acoustic variability, is a potentially useful tool for stratifying diver sampling effort for grouper census.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Functional linkage between reef habitat quality and fish growth and production has remained elusive. Most current research is focused on correlative relationships between a general habitat type and presence/absence of a species, an index of species abundance, or species diversity. Such descriptive information largely ignores how reef attributes regulate reef fish abundance (density-dependent habitat selection), trophic interactions, and physiological performance (growth and condition). To determine the functional relationship between habitat quality, fish abundance, trophic interactions, and physiological performance, we are using an experimental reef system in the northeastern Gulf of Mexico where we apply advanced sensor and biochemical technologies. Our study site controls for reef attributes (size, cavity space, and reef mosaics) and focuses on the processes that regulate gag grouper (Mycteroperca microlepis) abundance, behavior and performance (growth and condition), and the availability of their pelagic prey. We combine mobile and fixed-active (fisheries) acoustics, passive acoustics, video cameras, and advanced biochemical techniques. Fisheries acoustics quantifies the abundance of pelagic prey fishes associated with the reefs and their behavior. Passive acoustics and video allow direct observation of gag and prey fish behavior and the acoustic environment, and provide a direct visual for the interpretation of fixed fisheries acoustics measurements. New application of biochemical techniques, such as Electron Transport System (ETS) assay, allow the in situ measurement of metabolic expenditure of gag and relates this back to reef attributes, gag behavior, and prey fish availability. Here, we provide an overview of our integrated technological approach for understanding and quantifying the functional relationship between reef habitat quality and one element of production – gag grouper growth on shallow coastal reefs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are 19 economically important reef fish species in the deepwater (l00-300 m) fishery of the southeastern United States. Five species make up the majority (over 97% by weight) of the catch. In descending order of total landings for 1995, they are: tilefish, Lopholatilus chamaeleonticeps, snowy grouper, Epinephelus niveatus, blueline tilefish, Caulolatilus microps, warsaw grouper, Epinephelus nigritus, and yellowedge grouper, E. flavolimbatus. Life history summaries and estimates of catches from 1972 through 1995 for 14 species are described. (PDF file contains 45 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Information on long-term temporal variability of and trends in benthic community-structure variables, such as biomass, is needed to estimate the range of normal variability in comparison with the effects of environmental change or disturbance. Fishery resource distribution and population growth will be influenced by such variability. This study examines benthic macrofaunal biomass and related data collected annually between 1978 and 1985 at 27 sites on the continental shelf of the northwestern Atlantic, from North Carolina to the southern Gulf of Maine. The study was expanded at several sites with data from other studies collected at the same sites prior to 1978. Results indicate that although there was interannual and seasonal variability, as expected, biomass levels over the study period showed few clear trends. Sites exhibiting trends were either in pollution-stressed coastal areas or influenced by the population dynamics of one or a few species, especially echinoderms. (PDF file contains 34 pages.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ichthyofauna of the coastal «10 m depth) habitat of the South Atlantic Bight were investigated between Cape Fear, North Carolina, and the St. John's River, Florida. Trawl collections from four nonconsecutive seasons in the period July 1980 to December 1982 indicated that the fish community is dominated by the family Sciaenidae, particularly juvenile forms. Spot (Leiostomus xanthurus) and Atlantic croaker (Micropogonias undulatus) were the two most abundant species and dominated catches during all seasons. Atlantic menhaden (Brevoortin tyrannus) was also very abundant, but only seasonally (winter and spring) dominant in the catches. Elasmobranch fIShes, especially rajiforms and carcharinids, contributed to much of the biomass of fishes collected. Total fish abundance was greatest in winter and lowest in summer and was influenced by the seasonality of Atlantic menhaden and Atlantic croaker in the catches. Biomass was highest in spring and lowest in summer, and was influenced by biomass of spot. Fish density ranged from 321 individuals and 12.2 kg per hectare to 746 individuals and 25.2 kg per hectare. Most species ranged widely throughout the bight, and showed some evidence of seasonal migration. Species assemblages were dominated by ubiquitous year-round residents of the coastal waters of the bight. Diversity (H') was highest in summer, and appeared influenced by the evenness of distribution of individuals among species. (PDF file contains 56 pages.)