940 resultados para An eddy-resolving ocean model simulation
Resumo:
Motivated by the unconventional properties and rich phase diagram of NaxCoO2 we consider the electronic and magnetic properties of a two-dimensional Hubbard model on an isotropic triangular lattice doped with electrons away from half-filling. Dynamical mean-field theory (DMFT) calculations predict that for negative intersite hopping amplitudes (t < 0) and an on-site Coulomb repulsion, U, comparable to the bandwidth, the system displays properties typical of a weakly correlated metal. In contrast, for t > 0 a large enhancement of the effective mass, itinerant ferromagnetism, and a metallic phase with a Curie-Weiss magnetic susceptibility are found in a broad electron doping range. The different behavior encountered is a consequence of the larger noninteracting density of states (DOS) at the Fermi level for t > 0 than for t < 0, which effectively enhances the mass and the scattering amplitude of the quasiparticles. The shape of the DOS is crucial for the occurrence of ferromagnetism as for t > 0 the energy cost of polarizing the system is much smaller than for t < 0. Our observation of Nagaoka ferromagnetism is consistent with the A-type antiferromagnetism (i.e., ferromagnetic layers stacked antiferromagnetically) observed in neutron scattering experiments on NaxCoO2. The transport and magnetic properties measured in NaxCoO2 are consistent with DMFT predictions of a metal close to the Mott insulator and we discuss the role of Na ordering in driving the system towards the Mott transition. We propose that the Curie-Weiss metal phase observed in NaxCoO2 is a consequence of the crossover from a bad metal with incoherent quasiparticles at temperatures T > T-* and Fermi liquid behavior with enhanced parameters below T-*, where T-* is a low energy coherence scale induced by strong local Coulomb electron correlations. Our analysis also shows that the one band Hubbard model on a triangular lattice is not enough to describe the unusual properties of NaxCoO2 and is used to identify the simplest relevant model that captures the essential physics in NaxCoO2. We propose a model which allows for the Na ordering phenomena observed in the system which, we propose, drives the system close to the Mott insulating phase even at large dopings.
Resumo:
Mice expressing human cholesteryl ester transfer protein (huCETP) are more resistant to Escherichia coli bacterial wall LIPS because death rates 5 days after intraperitoneal inoculation of LIPS were higher in wild-type than in huCETP(+/-) mice, whereas all huCETP(+/+) mice remained alive. After LIPS inoculation, plasma concentrations of TNF-alpha and IL-6 increased less in huCETP(+/+) than in wild-type mice. LPS in vitro elicited lower TNF-alpha production by CETP expressing than by wild-type macrophages. In addition, TNF-alpha production by RAW 264.7 murine macrophages increased on incubation with LPS but decreased in a dose-dependent manner when human CETP was added to the medium. Human CETP in vitro enhanced the LIPS binding to plasma high-density lipoprotein/low-density lipoprotein. The liver uptake of intravenous infused C-14-LPS from Salmonella typhimurium was greater in huCETP(+/+) than in wild-type mice. Present data indicate for the first time that CETP is an endogenous component involved in the first line of defense against an exacerbated production of proinflammatory mediators.
Resumo:
This paper proposed a novel model for short term load forecast in the competitive electricity market. The prior electricity demand data are treated as time series. The forecast model is based on wavelet multi-resolution decomposition by autocorrelation shell representation and neural networks (multilayer perceptrons, or MLPs) modeling of wavelet coefficients. To minimize the influence of noisy low level coefficients, we applied the practical Bayesian method Automatic Relevance Determination (ARD) model to choose the size of MLPs, which are then trained to provide forecasts. The individual wavelet domain forecasts are recombined to form the accurate overall forecast. The proposed method is tested using Queensland electricity demand data from the Australian National Electricity Market. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
We describe the use of a murine model to evaluate resistance against subsequent challenge following a primary infection with oncospheres of Echinococcus granulosus. Mice (Kunming strain) were infected with hatched oncospheres of Echinococcus granulosus; 21 days later a second challenge was given by a different route of infection. A primary infection by intraperitoneal (i.p.) injection stimulated 100 and 90.5% protection in terms of reduced cyst numbers against a secondary infection given subcutaneously (s.c.) or intravenously (i.v.) respectively. A primary infection given s.c. followed by i.p. or i.v. challenge resulted in 84.0 and 100% protection, respectively. Intravenous infection followed by i.p. or s.c. challenge resulted in 98.5 and 69.4% protection, respectively. With the i.v. route of infection, almost all resultant cysts were present in the lungs. The data show that a primary infection with oncospheres can induce total or a high degree of protection against a subsequent challenge and confirms that natural (concomitant) immunity can be stimulated in the intermediate host as the result of a primary infection. This may explain the decline in hydatid infection in sheep older than 2 years in hyper-endemic areas such as those found in Xingjiang, China. These older sheep may have been earlier infected and have subsequently self-cured, with the primary infection stimulating an immune response that protects the intermediate host animals from further infection. (C) 2001 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
This work aims to identify and rank a set of Lean and Green practices and supply chain performance measures on which managers should focus to achieve competitiveness and improve the performance of automotive supply chains. The identification of the contextual relationships among the suggested practices and measures, was performed through literature review. Their ranking was done by interviews with professionals from the automotive industry and academics with wide knowledge on the subject. The methodology of interpretive structural modelling (ISM) is a useful methodology to identify inter relationships among Lean and Green practices and supply chain performance measures and to support the evaluation of automotive supply chain performance. Using the ISM methodology, the variables under study were clustered according to their driving power and dependence power. The ISM methodology was proposed to be used in this work. The model intends to provide a better understanding of the variables that have more influence (driving variables), the others and those which are most influenced (dependent variables) by others. The information provided by this model is strategic for managers who can use it to identify which variables they should focus on in order to have competitive supply chains.
Resumo:
Dissertação de mestrado integrado in Civil Engineering
Resumo:
Besley (1988) uses a scaling approach to model merit good arguments in commodity tax policy. In this paper, I question this approach on the grounds that it produces 'wrong' recommendations--taxation (subsidisation) of merit (demerit) goods--whenever the demand for the (de)merit good is inelastic. I propose an alternative approach that does not suffer from this deficiency, and derive the ensuing first and second best tax rules, as well as the marginal cost expressions to perform tax reform analysis.
Resumo:
This paper contributes to the on-going empirical debate regarding the role of the RBC model and in particular of technology shocks in explaining aggregate fluctuations. To this end we estimate the model’s posterior density using Markov-Chain Monte-Carlo (MCMC) methods. Within this framework we extend Ireland’s (2001, 2004) hybrid estimation approach to allow for a vector autoregressive moving average (VARMA) process to describe the movements and co-movements of the model’s errors not explained by the basic RBC model. The results of marginal likelihood ratio tests reveal that the more general model of the errors significantly improves the model’s fit relative to the VAR and AR alternatives. Moreover, despite setting the RBC model a more difficult task under the VARMA specification, our analysis, based on forecast error and spectral decompositions, suggests that the RBC model is still capable of explaining a significant fraction of the observed variation in macroeconomic aggregates in the post-war U.S. economy.
Resumo:
This paper develops methods for Stochastic Search Variable Selection (currently popular with regression and Vector Autoregressive models) for Vector Error Correction models where there are many possible restrictions on the cointegration space. We show how this allows the researcher to begin with a single unrestricted model and either do model selection or model averaging in an automatic and computationally efficient manner. We apply our methods to a large UK macroeconomic model.
Resumo:
NORTH SEA STUDY OCCASIONAL PAPER No. 118
Resumo:
Employing an endogenous growth model with human capital, this paper explores how productivity shocks in the goods and human capital producing sectors contribute to explaining aggregate fluctuations in output, consumption, investment and hours. Given the importance of accounting for both the dynamics and the trends in the data not captured by the theoretical growth model, we introduce a vector error correction model (VECM) of the measurement errors and estimate the model’s posterior density function using Bayesian methods. To contextualize our findings with those in the literature, we also assess whether the endogenous growth model or the standard real business cycle model better explains the observed variation in these aggregates. In addressing these issues we contribute to both the methods of analysis and the ongoing debate regarding the effects of innovations to productivity on macroeconomic activity.
Resumo:
Combustion-derived and manufactured nanoparticles (NPs) are known to provoke oxidative stress and inflammatory responses in human lung cells; therefore, they play an important role during the development of adverse health effects. As the lungs are composed of more than 40 different cell types, it is of particular interest to perform toxicological studies with co-cultures systems, rather than with monocultures of only one cell type, to gain a better understanding of complex cellular reactions upon exposure to toxic substances. Monocultures of A549 human epithelial lung cells, human monocyte-derived macrophages and monocyte-derived dendritic cells (MDDCs) as well as triple cell co-cultures consisting of all three cell types were exposed to combustion-derived NPs (diesel exhaust particles) and to manufactured NPs (titanium dioxide and single-walled carbon nanotubes). The penetration of particles into cells was analysed by transmission electron microscopy. The amount of intracellular reactive oxygen species (ROS), the total antioxidant capacity (TAC) and the production of tumour necrosis factor (TNF)-a and interleukin (IL)-8 were quantified. The results of the monocultures were summed with an adjustment for the number of each single cell type in the triple cell co-culture. All three particle types were found in all cell and culture types. The production of ROS was induced by all particle types in all cell cultures except in monocultures of MDDCs. The TAC and the (pro-)inflammatory reactions were not statistically significantly increased by particle exposure in any of the cell cultures. Interestingly, in the triple cell co-cultures, the TAC and IL-8 concentrations were lower and the TNF-a concentrations were higher than the expected values calculated from the monocultures. The interplay of different lung cell types seems to substantially modulate the oxidative stress and the inflammatory responses after NP exposure. [Authors]
Resumo:
BACKGROUND: Advances in nebulizer design have produced both ultrasonic nebulizers and devices based on a vibrating mesh (vibrating mesh nebulizers), which are expected to enhance the efficiency of aerosol drug therapy. The aim of this study was to compare 4 different nebulizers, of 3 different types, in an in vitro model using albuterol delivery and physical characteristics as benchmarks. METHODS: The following nebulizers were tested: Sidestream Disposable jet nebulizer, Multisonic Infra Control ultrasonic nebulizer, and the Aerogen Pro and Aerogen Solo vibrating mesh nebulizers. Aerosol duration, temperature, and drug solution osmolality were measured during nebulization. Albuterol delivery was measured by a high-performance liquid chromatography system with fluorometric detection. The droplet size distribution was analyzed with a laser granulometer. RESULTS: The ultrasonic nebulizer was the fastest device based on the duration of nebulization; the jet nebulizer was the slowest. Solution temperature decreased during nebulization when the jet nebulizer and vibrating mesh nebulizers were used, but it increased with the ultrasonic nebulizer. Osmolality was stable during nebulization with the vibrating mesh nebulizers, but increased with the jet nebulizer and ultrasonic nebulizer, indicating solvent evaporation. Albuterol delivery was 1.6 and 2.3 times higher with the ultrasonic nebulizer and vibrating mesh nebulizers devices, respectively, than with the jet nebulizer. Particle size was significantly higher with the ultrasonic nebulizer. CONCLUSIONS: The in vitro model was effective for comparing nebulizer types, demonstrating important differences between nebulizer types. The new devices, both the ultrasonic nebulizers and vibrating mesh nebulizers, delivered more aerosolized drug than traditional jet nebulizers.
Resumo:
Escherichia coli is commonly involved in infections with a heavy bacterial burden. Piperacillin-tazobactam and carbapenems are among the recommended empirical treatments for health care-associated complicated intra-abdominal infections. In contrast to amoxicillin-clavulanate, both have reduced in vitro activity in the presence of high concentrations of extended-spectrum β-lactamase (ESBL)-producing and non-ESBL-producing E. coli bacteria. Our goal was to compare the efficacy of these antimicrobials against different concentrations of two clinical E. coli strains, one an ESBL-producer and the other a non-ESBL-producer, in a murine sepsis model. An experimental sepsis model {~5.5 log10 CFU/g [low inoculum concentration (LI)] or ~7.5 log(10) CFU/g [high inoculum concentration (HI)]} using E. coli strains ATCC 25922 (non-ESBL producer) and Ec1062 (CTX-M-14 producer), which are susceptible to the three antimicrobials, was used. Amoxicillin-clavulanate (50/12.5 mg/kg given intramuscularly [i.m.]), piperacillin-tazobactam (25/3.125 mg/kg given intraperitoneally [i.p.]), and imipenem (30 mg/kg i.m.) were used. Piperacillin-tazobactam and imipenem reduced spleen ATCC 25922 strain concentrations (-2.53 and -2.14 log10 CFU/g [P < 0.05, respectively]) in the HI versus LI groups, while amoxicillin-clavulanate maintained its efficacy (-1.01 log10 CFU/g [no statistically significant difference]). Regarding the Ec1062 strain, the antimicrobials showed lower efficacy in the HI than in the LI groups: -0.73, -1.89, and -1.62 log10 CFU/g (P < 0.05, for piperacillin-tazobactam, imipenem, and amoxicillin-clavulanate, respectively, although imipenem and amoxicillin-clavulanate were more efficacious than piperacillin-tazobactam). An adapted imipenem treatment (based on the time for which the serum drug concentration remained above the MIC obtained with a HI of the ATCC 25922 strain) improved its efficacy to -1.67 log10 CFU/g (P < 0.05). These results suggest that amoxicillin-clavulanate could be an alternative to imipenem treatment of infections caused by ESBL- and non-ESBL-producing E. coli strains in patients with therapeutic failure with piperacillin-tazobactam.