762 resultados para Amyotropic lateral sclerosis - Patients - Australia
Resumo:
Mode of access: Internet.
Resumo:
The behavior and stability of motor units (MUs) in response to electrical stimulation of different intensities can be assessed with the stimulus-response curve, which is a graphical representation of the size of the compound muscle action potential (CMAP) in relation to stimulus intensity. To examine MU characteristics across the whole stimulus range, the variability of CMAP responses to electrical stimulation, and the differences that occur between normal and disease states, the curve was studied in 11 normal subjects and 16 subjects with amyotrophic lateral sclerosis (ALS). In normal subjects, the curve showed a gradual increase in CMAP size with increasing stimulus intensity, although one or two discrete steps were sometimes observed in the upper half of the curve, indicating the activation of large MUs at higher intensities. In ALS subjects, large discrete steps, due to loss of MUs and collateral sprouting, were frequently present. Variability of the CMAP responses was greater than baseline variability, indicating variability of MU responses, and at certain levels this variability was up to 100 mu Vms. The stimulus-response curve shows differences between normal and ALS subjects and provides information on MU activation and variability throughout the curve.
Resumo:
We have compared the expression pattern of NMDA receptor subunits (NR1 and NR2A-D)and NRI splice variants (NR1-1a/1b,-2a/2b,-3a/3b,4a/4b) in motor neuron populations from adult Wistar rats that are vulnerable (hypoglossal, XII) or resistant (oculomotor, III) to death in amyotrophic lateral sclerosis (ALS). The major finding was higher levels of expression of the NR2B subunit in the hypoglossal nucleus. Quantitative real-time PCR showed that NR1 was expressed at a greater level than any of the NR2 subunits (> 15 fold greater, P
Resumo:
RESUMO: Introdução e objetivos: Não existia um estudo multicêntrico que descrevesse as características dos doentes com EM, da doença em si, ou do seu tratamento, em Portugal.Métodos: Doentes McDonald 2010 positivos foram sequencialmente recrutados em 7 centros entre Maio e Novembro 2014. Aplicou-se um Caderno de Recolha de Dados incidindo na demografia, doença, educação e emprego (estudo PORT-MS). Resultados: 561 doentes incluídos. Primeiros sintomas aos 30,2±10,5 anos (RRMS 29,2±10, PPMS 39,4±11,7, p<0,001); diagnóstico 3,2±5,3 anos depois (RRMS 3,0±5,1, PPMS 4,9±2,5, p=0,002); tempo de doença após diagnóstico 9,4±7,2 anos (semelhante RRMS no diagnóstico e PPMS); idade atual 42,9±12,4 anos (grupo RRMS no diagnóstico 42,0±12,1, PPMS 52,5±11,3, p<0,001); EDSS atual 2,5 (RRMS 2.0, PPMS 6.0); proporção feminino:masculino é 2,5:1 (RRMS semelhante, PPMS 1,1:1, p<0,05); no diagnóstico RRMS 90,6%, SPMS 0,9%, PPMS 8,6%; 9,5% dos RRMS encontravam-se em SP na inclusão (nomeadamente os com mais idade no diagnóstico e/ou atualidade ou tempo de doença mais prolongado). PPMS mais frequente em doentes diagnosticados mais tardiamente (p<0,001), onde aumenta também ligeiramente a proporção de mulheres na PPMS. Nas últimas décadas: novos casos mostram estabilidade na proporção de géneros e tipos de doença; idade nos primeiros sintomas e no diagnóstico aumentou ligeiramente, tempo entre eles diminuiu ligeiramente. Proporção sob DMT (Maio 2014): global 84,5%; atualmente RRMS 90,4%; SPMS 70,8%; PPMS 36,8%; progressivas agregadas 48%. Tipo de DMT, amostra global: interferões 56,5%, GA 18,4%, Natalizumab 11,6%, Fingolimod 9,7%. Global: economicamente ativos 61,5%, desemprego 13,5%, 74,1% dos não activos estão reformados por doença. Gravidezes após diagnóstico em 15% mulheres. Casos com história familiar positiva 7,8%. Discussão e conclusões: Incluída cerca de 10% da população portuguesa. Resultados congruentes com dados internacionais. Elevada proporção sob DMT, mesmo EDSS alto e formas progressivas. Terapêuticas de segunda linha sub representadas. Doentes jovens e com doença ligeira com vida económica ativa; restantes essencialmente reformados por doença.---------------- ABSTRACT : Background/aims: In Portugal, there wasn’t a multicentric study on the general characteristics (demography, disease milestones, DMT, socioeconomic status) of Multiple Sclerosis patients. Methods: Patients fulfilling McDonald 2010 criteria were sequentially recruited from May to November 2014 in 7 centers and data was systematically collected. Results: 561 patients included. First symptoms occurred at 30,2±10,5 years-old (RRMS 29,2±10, PPMS 39,4±11,7, p<0,001); diagnosis 3,2±5,3 years later (RRMS 3,0±5,1, PPMS 4,9±2,5, p=0,002); 9,4±7,2 years elapsed since diagnosis (similar for those is RRMS at diagnosis and PPMS); current age 42,9±12,4 years-old (group RRMS at diagnosis 42,0±12,1, PPMS 52,5±11,3, p<0,001); current EDSS 2,5 (RRMS 2.0, PPMS 6.0); females to males 2,5:1 (RRMS similar, PPMS 1,1:1, p<0,05); at diagnosis RRMS 90,6%, SPMS 0,9%, PPMS 8,6%; 9,5% of RRMS reached SP at inclusion (those older at diagnosis, in actuality, or with longer follow-up). PPMS more frequente in patients diagnosed at older ages (p<0,001), also slight increase in females. Along the last decades: new cases have showed stable proportions of gender and disease types; age at first symptoms and diagnosis slightly increased, time between them slightly decreased. Proportion on DMT (May 2014): 84,5% of all; 90,4% of currently in RRMS; 70,8% of SPMS; 36,8% of PPMS; 48% of progressive forms together. Type of DMT, all patients: interferons 56,5%, Glatiramer Acetate 18,4%, Natalizumab 11,6%, Fingolimod 9,7%. Economically active 61,5% of all, unemployment 13,5%, 74,1% of non-active are retired due to disease. Females pregnant after diagnosis 15%. Positive family cases in 7,8%. Discussion/Conclusions: 10% of the national MS population collected. Data generally consistente with international reports. Proportion under DMT relatively high in all disease types, but second line therapies underrepresented. Young patients with mild disease have an active economic life. Those not active are essentially retired due to disease.
Resumo:
Amyotrophic lateral sclerosis (ALS) is an incurable neuromuscular disease that leads to a profound loss of life quality and premature death. Around 10% of the cases are inherited and ALS8 is an autosomal dominant form of familial ALS caused by mutations in the vamp-associated protein B/C (VAPB) gene. The VAPB protein is involved in many cellular processes and it likely contributes to the pathogenesis of other forms of ALS besides ALS8. A number of successful drug tests in ALS animal models could not be translated to humans underscoring the need for novel approaches. The induced pluripotent stem cells (iPSC) technology brings new hope, since it can be used to model and investigate diseases in vitro. Here we present an additional tool to study ALS based on ALS8-iPSC. Fibroblasts from ALS8 patients and their non-carrier siblings were successfully reprogrammed to a pluripotent state and differentiated into motor neurons. We show for the first time that VAPB protein levels are reduced in ALS8-derived motor neurons but, in contrast to over-expression systems, cytoplasmic aggregates could not be identified. Our results suggest that optimal levels of VAPB may play a central role in the pathogenesis of ALS8, in agreement with the observed reduction of VAPB in sporadic ALS.
Resumo:
The Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease characterized by progressive muscle weakness that leads the patient to death, usually due to respiratory complications. Thus, as the disease progresses the patient will require noninvasive ventilation (NIV) and constant monitoring. This paper presents a distributed architecture for homecare monitoring of nocturnal NIV in patients with ALS. The implementation of this architecture used single board computers and mobile devices placed in patient’s homes, to display alert messages for caregivers and a web server for remote monitoring by the healthcare staff. The architecture used a software based on fuzzy logic and computer vision to capture data from a mechanical ventilator screen and generate alert messages with instructions for caregivers. The monitoring was performed on 29 patients for 7 con-tinuous hours daily during 5 days generating a total of 126000 samples for each variable monitored at a sampling rate of one sample per second. The system was evaluated regarding the rate of hits for character recognition and its correction through an algorithm for the detection and correction of errors. Furthermore, a healthcare team evaluated regarding the time intervals at which the alert messages were generated and the correctness of such messages. Thus, the system showed an average hit rate of 98.72%, and in the worst case 98.39%. As for the message to be generated, the system also agreed 100% to the overall assessment, and there was disagreement in only 2 cases with one of the physician evaluators.
Resumo:
The Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease characterized by progressive muscle weakness that leads the patient to death, usually due to respiratory complications. Thus, as the disease progresses the patient will require noninvasive ventilation (NIV) and constant monitoring. This paper presents a distributed architecture for homecare monitoring of nocturnal NIV in patients with ALS. The implementation of this architecture used single board computers and mobile devices placed in patient’s homes, to display alert messages for caregivers and a web server for remote monitoring by the healthcare staff. The architecture used a software based on fuzzy logic and computer vision to capture data from a mechanical ventilator screen and generate alert messages with instructions for caregivers. The monitoring was performed on 29 patients for 7 con-tinuous hours daily during 5 days generating a total of 126000 samples for each variable monitored at a sampling rate of one sample per second. The system was evaluated regarding the rate of hits for character recognition and its correction through an algorithm for the detection and correction of errors. Furthermore, a healthcare team evaluated regarding the time intervals at which the alert messages were generated and the correctness of such messages. Thus, the system showed an average hit rate of 98.72%, and in the worst case 98.39%. As for the message to be generated, the system also agreed 100% to the overall assessment, and there was disagreement in only 2 cases with one of the physician evaluators.
Resumo:
Objective: To assess the relationship between Bayesian MUNE and histological motor neuron counts in wild-type mice and in an animal model of ALS. Methods: We performed Bayesian MUNE paired with histological counts of motor neurons in the lumbar spinal cord of wild-type mice and transgenic SOD1 G93A mice that show progressive weakness over time. We evaluated the number of acetylcholine endplates that were innervated by a presynaptic nerve. Results: In wild-type mice, the motor unit number in the gastrocnemius muscle estimated by Bayesian MUNE was approximately half the number of motor neurons in the region of the spinal cord that contains the cell bodies of the motor neurons supplying the hindlimb crural flexor muscles. In SOD1 G93A mice, motor neuron numbers declined over time. This was associated with motor endplate denervation at the end-stage of disease. Conclusion: The number of motor neurons in the spinal cord of wild-type mice is proportional to the number of motor units estimated by Bayesian MUNE. In SOD1 G93A mice, there is a lower number of estimated motor units compared to the number of spinal cord motor neurons at the end-stage of disease, and this is associated with disruption of the neuromuscular junction. Significance: Our finding that the Bayesian MUNE method gives estimates of motor unit numbers that are proportional to the numbers of motor neurons in the spinal cord supports the clinical use of Bayesian MUNE in monitoring motor unit loss in ALS patients. © 2012 International Federation of Clinical Neurophysiology.
Resumo:
Advances in algorithms for approximate sampling from a multivariable target function have led to solutions to challenging statistical inference problems that would otherwise not be considered by the applied scientist. Such sampling algorithms are particularly relevant to Bayesian statistics, since the target function is the posterior distribution of the unobservables given the observables. In this thesis we develop, adapt and apply Bayesian algorithms, whilst addressing substantive applied problems in biology and medicine as well as other applications. For an increasing number of high-impact research problems, the primary models of interest are often sufficiently complex that the likelihood function is computationally intractable. Rather than discard these models in favour of inferior alternatives, a class of Bayesian "likelihoodfree" techniques (often termed approximate Bayesian computation (ABC)) has emerged in the last few years, which avoids direct likelihood computation through repeated sampling of data from the model and comparing observed and simulated summary statistics. In Part I of this thesis we utilise sequential Monte Carlo (SMC) methodology to develop new algorithms for ABC that are more efficient in terms of the number of model simulations required and are almost black-box since very little algorithmic tuning is required. In addition, we address the issue of deriving appropriate summary statistics to use within ABC via a goodness-of-fit statistic and indirect inference. Another important problem in statistics is the design of experiments. That is, how one should select the values of the controllable variables in order to achieve some design goal. The presences of parameter and/or model uncertainty are computational obstacles when designing experiments but can lead to inefficient designs if not accounted for correctly. The Bayesian framework accommodates such uncertainties in a coherent way. If the amount of uncertainty is substantial, it can be of interest to perform adaptive designs in order to accrue information to make better decisions about future design points. This is of particular interest if the data can be collected sequentially. In a sense, the current posterior distribution becomes the new prior distribution for the next design decision. Part II of this thesis creates new algorithms for Bayesian sequential design to accommodate parameter and model uncertainty using SMC. The algorithms are substantially faster than previous approaches allowing the simulation properties of various design utilities to be investigated in a more timely manner. Furthermore the approach offers convenient estimation of Bayesian utilities and other quantities that are particularly relevant in the presence of model uncertainty. Finally, Part III of this thesis tackles a substantive medical problem. A neurological disorder known as motor neuron disease (MND) progressively causes motor neurons to no longer have the ability to innervate the muscle fibres, causing the muscles to eventually waste away. When this occurs the motor unit effectively ‘dies’. There is no cure for MND, and fatality often results from a lack of muscle strength to breathe. The prognosis for many forms of MND (particularly amyotrophic lateral sclerosis (ALS)) is particularly poor, with patients usually only surviving a small number of years after the initial onset of disease. Measuring the progress of diseases of the motor units, such as ALS, is a challenge for clinical neurologists. Motor unit number estimation (MUNE) is an attempt to directly assess underlying motor unit loss rather than indirect techniques such as muscle strength assessment, which generally is unable to detect progressions due to the body’s natural attempts at compensation. Part III of this thesis builds upon a previous Bayesian technique, which develops a sophisticated statistical model that takes into account physiological information about motor unit activation and various sources of uncertainties. More specifically, we develop a more reliable MUNE method by applying marginalisation over latent variables in order to improve the performance of a previously developed reversible jump Markov chain Monte Carlo sampler. We make other subtle changes to the model and algorithm to improve the robustness of the approach.
Resumo:
OBJECTIVE: To examine a polymorphism within the 3' untranslated region of the leukemia inhibitory factor gene for an association with multiple sclerosis within an Australian case-control population. METHODS: A test group of 121 unrelated multiple sclerosis patients, of Caucasian origin, and 121 controls, matched for ethnicity, sex and age (+/-5 years) were included in the study. The LIF 3' UTR StuI polymorphism was genotyped by restriction fragment length polymorphism analysis. Statistical analysis of genotype and allele frequencies included Hardy-Weinberg law and conventional contingency table analysis incorporating the standard chi-squared test for independence. RESULTS: Allelic and genotype frequencies did not demonstrate a significant association between the case and control groups for the tested LIF 3' UTR StuI polymorphism. CONCLUSION: The results indicate that the LIF 3' UTR StuI polymorphism is not associated with multiple sclerosis, however we cannot exclude the hypothesis that other polymorphic alleles of LIF could be implicated in MS susceptibility.
Resumo:
The morbidity and mortality rates of renal disease in Indigenous Australians are significantly higher than those of non-Indigenous Australians, and are increasing. The dominant discourses of renal disease currently predicate this as essentially a client problem, rather than (for example) a health care system problem. These discourses are indicative of the dominant “white” paradigm of health care, which fosters an expectation of assimilation by the marginalised “other.” In this paper, we draw upon a sociological methodology (the actor network approach) and a qualitative method (discourse analysis) to tease out these issues in Indigenous renal disease. Based on empirical data, we explore on the one hand the requirements of the discourses, technologies and practices that have been developed for a particular type of renal patient and health system in Australia. On the other, we examine the cultural and practical specificities entailed in the performance of these technologies and practices in the Indigenous Australian context. The meeting of the praxiographic orientation of the actor network approach—which has been called “the politics of what” (Mol 2002)—and the sociocultural concerns of discourse analysis does provide a useful guide as to “what to do” when confronted with issues in health care that currently seems unfathomable. Our praxiographic analysis of the discourse enabled us to understand the difficulties involved in translating renal health care networks across cultural contexts in Australia and to understand the dynamic and contested nature of these networks. The actor network approach has its limitations, however, particularly in the articulation of possible strategies to align two disparate systems in a way that would ensure better health care for Indigenous renal patients. In this paper we will discuss some of the problems we encountered in drawing on this methodology in our attempt to unearth practical solutions to the conundrums our data presented.
Resumo:
Neurotrophic factors play essential role in the development and functioning of the nervous system and other organs. Glial cell line-Derived Neurotrophic Factor (GDNF) family ligands (GFLs) are of particular interest because they promote the survival of dopaminergic neurons in vitro, in Parkinson s disease animal models and in patients. GDNF is also a potent survival factor for the central motoneurons and thus is considered as a potential lead for the treatment of amyotrophic lateral sclerosis. The survival promoting receptor complex for GFLs consists of a ligand-specific co-receptor, GFRα and a signal transducing module, receptor tyrosine kinase RET. At least GDNF and persephin, a GFL, have established functions outside central nervous system. GDNF is crucial for enteric nervous system and kidney development as well as for spermatogenesis. Persephin controls calcitonin secretion. Communication between cells often occurs in the extracellular matrix (ECM), a meshwork, which is secreted and deposited by the cells and is mainly composed of fibrillar proteins and polymerized sugars. We evaluated the relationship between GFLs and extracellular matrix components and demonstrated that three GFLs - GDNF, neurturin and artemin bind heparan sulfates with nanomolar affinities. The fourth member of the family - persephin binds these polysaccharides thousand times less tightly. GDNF, neurturin and artemin also bind with high affinity to heparan sulfate proteoglycan (HSPG) isolated from the nervous system, syndecan-3. GDNF signals through HSPGs, evoking Src family kinase activation. This signaling induces cell spreading, hippocampal neurite outgrowth in vitro and cellular migration. Specifically, GDNF signaling through syndecan-3 is important for embryonic cortical neuron migration. Syndecan-3-deficient mice, similarly to mice lacking GDNF, have less GABAergic neurons in their cortex, as compared to the wild-type mice. This fact provides indirect evidence that GDNF interaction with syndecan-3 is important for cortical brain development. Noteworthy, in non-neuronal tissues GFLs may signal via other syndecans. We also present the structural model for a GDNF co-receptor, GFRα1. The X-ray structure of the GFRα1 domain 3 was solved with 1.8 Å resolution, revealing a new protein fold. Later we also solved the structure of the truncated GFRα1 in the complex with GDNF and this model was confirmed by site-directed mutagenesis. In summary, our work contributed to the structural characterization of GFRα-based receptor complex and revealed a new receptor for GDNF, neurturin and artemin the HSPG syndecan-3. This information is critically important for the development of GFRα/RET agonists for the treatment of neurodegenerative diseases.