814 resultados para Algebraische Geometrie, Computer Algebra
Resumo:
The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006.
Resumo:
The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006.
Resumo:
The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006.
Resumo:
The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006
Resumo:
The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006
Resumo:
This paper is partially supported by the Bulgarian Science Fund under grant Nr. DO 02– 359/2008.
Resumo:
BOOK REVIEWS Multibody System Mechanics: Modelling, Stability, Control, and Ro- bustness, by V. A. Konoplev and A. Cheremensky, Mathematics and its Appli- cations Vol. 1, Union of Bulgarian Mathematicians, Sofia, 2001, XXII + 288 pp., $ 65.00, ISBN 954-8880-09-01
Resumo:
This paper considers the use of the computer algebra system Mathematica for teaching university-level mathematics subjects. Outlined are basic Mathematica concepts, connected with different mathematics areas: algebra, linear algebra, geometry, calculus and analysis, complex functions, numerical analysis and scientific computing, probability and statistics. The course “Information technologies in mathematics”, which involves the use of Mathematica, is also presented - discussed are the syllabus, aims, approaches and outcomes.
Resumo:
This paper presents two algorithms for one-parameter local bifurcations of equilibrium points of dynamical systems. The algorithms are implemented in the computer algebra system Maple 13 © and designed as a package. Some examples are reported to demonstrate the package’s facilities.
Resumo:
Христина Костадинова, Красимир Йорджев - В статията се обсъжда представянето на произволна бинарна матрица с помощта на последователност от цели неотрицателни числа. Разгледани са някои предимства и недостатъци на това представяне като алтернатива на стандартното, общоприето представяне чрез двумерен масив. Показано е, че представянето на бинарните матрици с помощта на наредени n-торки от естествени числа води до по-бързи алгоритми и до съществена икономия на оперативна памет. Използуван е апарата на обектно-ориентираното програмиране със синтаксиса и семантиката на езика C++.
Resumo:
We show that the theory of involutive bases can be combined with discrete algebraic Morse Theory. For a graded k[x0 ...,xn]-module M, this yields a free resolution G, which in general is not minimal. We see that G is isomorphic to the resolution induced by an involutive basis. It is possible to identify involutive bases inside the resolution G. The shape of G is given by a concrete description. Regarding the differential dG, several rules are established for its computation, which are based on the fact that in the computation of dG certain patterns appear at several positions. In particular, it is possible to compute the constants independent of the remainder of the differential. This allows us, starting from G, to determine the Betti numbers of M without computing a minimal free resolution: Thus we obtain a new algorithm to compute Betti numbers. This algorithm has been implemented in CoCoALib by Mario Albert. This way, in comparison to some other computer algebra system, Betti numbers can be computed faster in most of the examples we have considered. For Veronese subrings S(d), we have found a Pommaret basis, which yields new proofs for some known properties of these rings. Via the theoretical statements found for G, we can identify some generators of modules in G where no constants appear. As a direct consequence, some non-vanishing Betti numbers of S(d) can be given. Finally, we give a proof of the Hyperplane Restriction Theorem with the help of Pommaret bases. This part is largely independent of the other parts of this work.
Resumo:
Food bought at supermarkets in, for instance, North America or the European Union, give comprehensive information about ingredients and allergens. Meanwhile, the menus of restaurants are usually incomplete and cannot be normally completed by the waiter. This is specially important when traveling to countries with a di erent culture. A curious example is "calamares en su tinta" (squid in its own ink), a common dish in Spain. Its brief description would be "squid with boiled rice in its own (black) ink", but an ingredient of its sauce is flour, a fact very important for celiacs. There are constraints based on religious believes, due to food allergies or to illnesses, while others just derive from personal preferences. Another complicated situation arise in hospitals, where the doctors' nutritional recommendations have to be added to the patient's usual constraints. We have therefore designed and developed a Rule Based Expert System (RBES) that can address these problems. The rules derive directly from the recipes of the di fferent dishes and contain the information about the required ingredients and ways of cooking. In fact, we distinguish: ingredients and ways of cooking, intermediate products (like sauces, that aren't always made explicit) and final products (the dishes listed in the menu of the restaurant). For a certain restaurant, customer and instant, the input to the RBES are: actualized stock of ingredients and personal characteristics of that customer. The RBES then prepares a "personalized menu" using set operations and knowledge extraction (thanks to an algebraic inference engine [1]). The RBES has been implemented in the computer algebra system MapleTM2015. A rst version of this work was presented at "Applications of Computer Algebra 2015" (ACA'2015) conference. The corresponding abstract is available at [2].
Computer-algebraische und analytische Methoden zur Berechnung von Vertexfunktionen im Standardmodell
Resumo:
Das Standardmodell der elektroschwachen Wechselwirkung hatin den vergangenen Jahrzehnten beachtliche Erfolge erzielt.Die Suche nach
Resumo:
Das Standardmodell der Elementarteilchenphysik istexperimentell hervorragend bestätigt, hat auf theoretischerSeite jedoch unbefriedigende Aspekte: Zum einen wird derHiggssektor der Theorie von Hand eingefügt, und zum anderenunterscheiden sich die Beschreibung des beobachtetenTeilchenspektrums und der Gravitationfundamental. Diese beiden Nachteile verschwinden, wenn mandas Standardmodell in der Sprache der NichtkommutativenGeometrie formuliert. Ziel hierbei ist es, die Raumzeit der physikalischen Theoriedurch algebraische Daten zu erfassen. Beispielsweise stecktdie volle Information über eine RiemannscheSpinmannigfaltigkeit M in dem Datensatz (A,H,D), den manspektrales Tripel nennt. A ist hierbei die kommutativeAlgebra der differenzierbaren Funktionen auf M, H ist derHilbertraum der quadratintegrablen Spinoren über M und D istder Diracoperator. Mit Hilfe eines solchen Tripels (zu einer nichtkommutativenAlgebra) lassen sich nun sowohl Gravitation als auch dasStandardmodell mit mathematisch ein und demselben Mittelerfassen. In der vorliegenden Arbeit werden nulldimensionale spektraleTripel (die diskreten Raumzeiten entsprechen) zunächstklassifiziert und in Beispielen wird eine Quantisierungsolcher Objekte durchgeführt. Ein Problem der spektralenTripel stellt ihre Beschränkung auf echt RiemannscheMetriken dar. Zu diesem Problem werden Lösungsansätzepräsentiert. Im abschließenden Kapitel der Arbeit wird dersogenannte 'Feynman-Beweis der Maxwellgleichungen' aufnichtkommutative Konfigurationsräume verallgemeinert.
Resumo:
In der Nichtkommutativen Geometrie werden Räume und Strukturen durch Algebren beschrieben. Insbesondere werden hierbei klassische Symmetrien durch Hopf-Algebren und Quantengruppen ausgedrückt bzw. verallgemeinert. Wir zeigen in dieser Arbeit, daß der bekannte Quantendoppeltorus, der die Summe aus einem kommutativen und einem nichtkommutativen 2-Torus ist, nur den Spezialfall einer allgemeineren Konstruktion darstellt, die der Summe aus einem kommutativen und mehreren nichtkommutativen n-Tori eine Hopf-Algebren-Struktur zuordnet. Diese Konstruktion führt zur Definition der Nichtkommutativen Multi-Tori. Die Duale dieser Multi-Tori ist eine Kreuzproduktalgebra, die als Quantisierung von Gruppenorbits interpretiert werden kann. Für den Fall von Wurzeln der Eins erhält man wichtige Klassen von endlich-dimensionalen Kac-Algebren, insbesondere die 8-dim. Kac-Paljutkin-Algebra. Ebenfalls für Wurzeln der Eins kann man die Nichtkommutativen Multi-Tori als Hopf-Galois-Erweiterungen des kommutativen Torus interpretieren, wobei die Rolle der typischen Faser von einer endlich-dimensionalen Hopf-Algebra gespielt wird. Der Nichtkommutative 2-Torus besitzt bekanntlich eine u(1)xu(1)-Symmetrie. Wir zeigen, daß er eine größere Quantengruppen-Symmetrie besitzt, die allerdings nicht auf die Spektralen Tripel des Nichtkommutativen Torus fortgesetzt werden kann.