991 resultados para Agriculture, Energy


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In light of larger public policy debates over intellectual property and climate change, this article considers patent practice, law, and policy in respect of biofuels. This debate has significant implications for public policy discussions in respect of energy independence, food security, and climate change. The first section of the paper provides a network analysis of patents in respect of biofuels across the three generations. It provides empirical research in respect of patent subject matter, ownership, and strategy in respect of biofuels. The second section provides a case study of significant patent litigation over biofuels. There is an examination of the biofuels patent litigation between the Danish company Novozymes, and Danisco and DuPont. The third section examines flexibilities in respect of patent law and clean technologies in the context of the case study of biofuels. In particular, it explores the debate over substantive doctrinal matters in respect of biofuels – such as patentable subject matter, technology transfer, patent pools, compulsory licensing, and disclosure requirements. The conclusion explores the relevance of the debate over patent law and biofuels to the larger public policy discussions over energy independence, food security, and climate change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is a condensed version of the final report of a detailed field study of rural energy consumption patterns in six villages located west of Bangalore in the dry belt of Karnataka State in India. The study was carried out in two phases; first, a pilot study of four villages and second, the detailed study of six villages, the populations of which varied from around 350 to about 950. The pilot survey ended in late 1976, and most of the data was collected for the main project in 1977. Processing of the collected data was completed in 1980. The aim was to carry out a census survey, rather than a sample study. Hence, considerable effort was expended in production of both a suitable questionnaire, ensuring that all respondents were contacted, and devising methods which would accurately reflect the actual energy use in various energy-utilising activities. In the end, 560 households out of 578 (97%) were surveyed. The following ranking was found for the various energy sources in order of average percentage contribution to the annual total energy requirement: firewood, 81·6%; human energy, 7·7%; animal energy, 2·7%; kerosene, 2·1%; electricity, 0·6% and all other sources (rice husks, agro-wastes, coal and diesel fuel), 5·3%. In other words commercial fuels made only a small contribution to the overall energy use. It should be noted that dung cakes are not burned in this region. The average energy use pattern, sector by sector, again on a percentage basis, was as follows: domestic, 88·3%; industry, 4·7%; agriculture, 4·3%; lighting, 2·2% and transport, 0·5%. The total annual per capita energy consumption was 12·6 ± 1·2 GJ, giving an average annual household consumption of around 78·6 GJ.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Management of environmental emissions is a significant challenge and opportunity for all of horticulture, including the protected cropping sector. Energy is a significant input in controlled environment horticulture and an important source of environmental emissions. Energy underlies this industry’s capacity to provide a consistent supply of fresh, quality, safe food in a changing global climate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is a condensed version of the final report of a detailed field study of rural energy consumption patterns in six villages located west of Bangalore in the dry belt of Karnataka State in India. The study was carried out in two phases; first, a pilot study of four villages and second, the detailed study of six villages, the populations of which varied from around 350 to about 950. The pilot survey ended in late 1976, and most of the data was collected for the main project in 1977. Processing of the collected data was completed in 1980. The aim was to carry out a census survey, rather than a sample study. Hence, considerable effort was expended in production of both a suitable questionnaire, ensuring that all respondents were contacted, and devising methods which would accurately reflect the actual energy use in various energy-utilising activities. In the end, 560 households out of 578 (97%) were surveyed. The following ranking was found for the various energy sources in order of average percentage contribution to the annual total energy requirement: firewood, 81A·6%; human energy, 7A·7%; animal energy, 2A·7%; kerosene, 2A·1%; electricity, 0A·6% and all other sources (rice husks, agro-wastes, coal and diesel fuel), 5A·3%. In other words commercial fuels made only a small contribution to the overall energy use. It should be noted that dung cakes are not burned in this region. The average energy use pattern, sector by sector, again on a percentage basis, was as follows: domestic, 88A·3%; industry, 4A·7%; agriculture, 4A·3%; lighting, 2A·2% and transport, 0A·5%. The total annual per capita energy consumption was 12A·6 A± 1A·2 GJ, giving an average annual household consumption of around 78A·6 GJ.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to evaluate intensity, productivity and efficiency in agriculture in Finland and show implications for N and P fertiliser management. Environmental concerns relating to agricultural production have been and still are focused on arguments about policies that affect agriculture. These policies constrain production while demand for agricultural products such as food, fibre and energy continuously increase. Therefore the importance of increasing productivity is a great challenge to agriculture. Over the last decades producers have experienced several large changes in the production environment such as the policy reform when Finland joined the EU 1995. Other and market changes occurred with the further EU enlargement with neighbouring countries in 2005 and with the decoupling of supports over the 2006-2007 period. Decreasing prices a decreased number of farmers and decreased profitability in agricultural production have resulted from these changes and constraints and of technological development. It is known that the accession to the EU 1995 would herald changes in agriculture. Especially of interest was how the sudden changes in prices of commodities on especially those of cereals, decreased by 60%, would influence agricultural production. The knowledge of properties of the production function increased in importance as a consequence of price changes. A research on the economic instruments to regulate productions was carried out and combined with earlier studies in paper V. In paper I the objective was to compare two different technologies, the conventional farming and the organic farming, determine differences in productivity and technical efficiency. In addition input specific or environmental efficiencies were analysed. The heterogeneity of agricultural soils and its implications were analysed in article II. In study III the determinants of technical inefficiency were analysed. The aspects and possible effects of the instability in policies due to a partial decoupling of production factors and products were studied in paper IV. Consequently connection between technical efficiency based on the turnover and the sales return was analysed in this study. Simple economic instruments such as fertiliser taxes have a direct effect on fertiliser consumption and indirectly increase the value of organic fertilisers. However, fertiliser taxes, do not fully address the N and P management problems adequately and are therefore not suitable for nutrient management improvements in general. Productivity of organic farms is lower on average than conventional farms and the difference increases when looking at selling returns only. The organic sector needs more research and development on productivity. Livestock density in organic farming increases productivity, however, there is an upper limit to livestock densities on organic farms and therefore nutrient on organic farms are also limited. Soil factors affects phosphorous and nitrogen efficiency. Soils like sand and silt have lower input specific overall efficiency for nutrients N and P. Special attention is needed for the management on these soils. Clay soils and soils with moderate clay content have higher efficiency. Soil heterogeneity is cause for an unavoidable inefficiency in agriculture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An examination of the data available at 22 meteorological stations in Karnataka State shows that wind velocities in the State as a whole are neither spectacularly high nor negligibly low. The highest winds (annual mean of around 13 km/hr) are experienced in parts of the northern maidan region of the State (Gulbarga, Raichur and Bidar districts) and in Bangalore. The winds are strongly seasonal: typically, the five monsoon months May-September account for about 80% of the annual wind energy flux. Although the data available are inadequate to make precise estimates, they indicate that the total wind energy potential of the State is about an order of magnitude higher than the current electrical energy consumption. The possible exploitation of wind energy for applications in rural areas therefore requires serious consideration, but it is argued that to be successful it is essential to formulate an integrated and carefully planned programme. The output of current windpumps needs to be increased; a doubling should be feasible by the design of suitable load-matching devices. The first cost has to be reduced by careful design, by the use of local materials and skills and by employing a labour-intensive technology. A consideration of the agricultural factors in the northern maidan region of the State shows that there is likely to be a strong need for mechanical assistance in supplemental and life-saving irrigation for the dry crops characteristic of the area. A technological target for a windmill that could find applications in this area would be one with a rotor diameter of about 10 m that can lift about 10,000 litres of water per hour in winds of 10 km/hr (2.8 m/s) hourly average speed and costs less than about Rs 10,000. Although no such windmills exist as of today, the authors believe that achievement of this target is feasible. An examination of various possible scenarios for the use of windmills in this area suggests that with a windpump costing about Rs 12,000, a three hectare farm growing two dry crops a year can expect an annual return of about 150% from an initial investment of about Rs 15,000. It is concluded that it should be highly worthwhile to undertake a coordinated programme for wind energy development that will include more detailed wind surveys in the northern maidan area (as well as some others, such as the Western Ghats), the development of suitable windmill designs and a study of their applications to agriculture as well as to other fields.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study evaluates the feasibility of undelimbed Scots pine (Pinus sylvestris L.) for integrated production of pulp and energy in a kraft pulp mill from the technical, economic and environmental points of view, focusing on the potential of bundle harvesting. The feasibility of tree sections for pulp production was tested by conducting an industrial wood-handling experiment, laboratory cooking and bleaching trials, using conventional small-diameter Scots pine pulpwood as a reference. These trials showed that undelimbed Scots pine sections can be processed in favourable conditions as a blend with conventional small-diameter pulpwood without reducing the pulp quality. However, fibre losses at various phases of the process may increase when using undelimbed material. In the economic evaluation, both pulp production and wood procurement costs were considered, using the relative wood paying capability of a kraft pulp mill as a determinant. The calculations were made for three Scots pine first-thinning stands with the breast-height diameter of the removal (6 12 cm) as the main distinctive factor. The supply chains included in the comparison were based on cut-to-length harvesting, whole-tree harvesting and bundle harvesting (whole-tree bundling). With the current ratio of pulp and energy prices, the wood paying capability declines with an increase in the proportion of the energy fraction of the raw material. The supply system based on the cut-to-length method was the most efficient option, resulting in the highest residual value at stump in most cases. A decline in the pulp price and an increase in the energy price improved the competitiveness of the whole-tree systems. With short truck transportation distances and low pulp prices, however, the harvesting of loose whole trees can result in higher residual value at stump in small-diameter stands. While savings in transportation costs did not compensate for the high cutting and compaction costs by the second prototype of the bundle harvester, an increase in transportation distances improved its competitiveness. Since harvesting undelimbed assortments increases nutrient export from the site, which can affect soil productivity, the whole-tree alternatives included in the present study cannot be recommended on infertile peatlands and mineral soils. The harvesting of loose whole trees or bundled whole trees implies a reduction in protective logging residues and an increase in site traffic or payloads. These factors increase the risk of soil damage, especially on peat soils with poor bearing capacity. Within the wood procurement parameters which were examined, the CO2 emissions of the supply systems varied from 13 27 kg m3. Compaction of whole trees into bundles reduced emissions from transportation by 30 39%, but these reductions were insufficient to compensate for the increased emissions from cutting and compaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

‪This dissertation examines the impacts of energy and climate policies on the energy and forest sectors, focusing on the case of Finland. The thesis consists of an introduction article and four separate studies. The dissertation was motivated by the climate concern and the increasing demand of renewable energy. In particular, the renewable energy consumption and greenhouse gas emission reduction targets of the European Union were driving this work. In Finland, both forest and energy sectors are in key roles in achieving these targets. In fact, the separation between forest and energy sector is diminishing as the energy sector is utilizing increasing amounts of wood in energy production and as the forest sector is becoming more and more important energy producer.‬ ‪The objective of this dissertation is to find out and measure the impacts of climate and energy policies on the forest and energy sectors. In climate policy, the focus is on emissions trading, and in energy policy the dissertation focuses on the promotion of renewable forest-based energy use. The dissertation relies on empirical numerical models that are based on microeconomic theory. Numerical partial equilibrium mixed complementarity problem models were constructed to study the markets under scrutiny. The separate studies focus on co-firing of wood biomass and fossil fuels, liquid biofuel production in the pulp and paper industry, and the impacts of climate policy on the pulp and paper sector.‬ ‪The dissertation shows that the policies promoting wood-based energy may have have unexpected negative impacts. When feed-in tariff is imposed together with emissions trading, in some plants the production of renewable electricity might decrease as the emissions price increases. The dissertation also shows that in liquid biofuel production, investment subsidy may cause high direct policy costs and other negative impacts when compared to other policy instruments. The results of the dissertation also indicate that from the climate mitigation perspective, perfect competition is the favored wood market competition structure, at least if the emissions trading system is not global.‬ ‪In conclusion, this dissertation suggests that when promoting the use of wood biomass in energy production, the favored policy instruments are subsidies that promote directly the renewable energy production (i.e. production subsidy, renewables subsidy or feed-in premium). Also, the policy instrument should be designed to be dependent on the emissions price or on the substitute price. In addition, this dissertation shows that when planning policies to promote wood-based renewable energy, the goals of the policy scheme should be clear before decisions are made on the choice of the policy instruments.‬

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite a significant growth in food production over the past half-century, one of the most important challenges facing society today is how to feed an expected population of some nine billion by the middle of the 20th century. To meet the expected demand for food without significant increases in prices, it has been estimated that we need to produce 70-100 per cent more food, in light of the growing impacts of climate change, concerns over energy security, regional dietary shifts and the Millennium Development target of halving world poverty and hunger by 2015. The goal for the agricultural sector is no longer simply to maximize productivity, but to optimize across a far more complex landscape of production, rural development, environmental, social justice and food consumption outcomes. However, there remain significant challenges to developing national and international policies that support the wide emergence of more sustainable forms of land use and efficient agricultural production. The lack of information flow between scientists, practitioners and policy makers is known to exacerbate the difficulties, despite increased emphasis upon evidence-based policy. In this paper, we seek to improve dialogue and understanding between agricultural research and policy by identifying the 100 most important questions for global agriculture. These have been compiled using a horizon-scanning approach with leading experts and representatives of major agricultural organizations worldwide. The aim is to use sound scientific evidence to inform decision making and guide policy makers in the future direction of agricultural research priorities and policy support. If addressed, we anticipate that these questions will have a significant impact on global agricultural practices worldwide, while improving the synergy between agricultural policy, practice and research. This research forms part of the UK Government's Foresight Global Food and Farming Futures project.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper contains an analysis of the technical options in agriculture for reducing greenhouse-gas emissions and increasing sinks, arising from three distinct mechanisms: (i) increasing carbon sinks in soil organic matter and above-ground biomass; (ii) avoiding carbon emissions from farms by reducing direct and indirect energy use; and (iii) increasing renewable-energy production from biomass that either substitutes for consumption of fossil fuels or replaces inefficient burning of fuelwood or crop residues, and so avoids carbon emissions, together with use of biogas digesters and improved cookstoves. We then review best-practice sustainable agriculture and renewable-resource-management projects and initiatives in China and India, and analyse the annual net sinks being created by these projects, and the potential market value of the carbon sequestered. We conclude with a summary of the policy and institutional conditions and reforms required for adoption of best sustainability practice in the agricultural sector to achieve the desired reductions in emissions and increases in sinks. A review of 40 sustainable agriculture and renewable-resource-management projects in China and India under the three mechanisms estimated a carbon mitigation potential of 64.8 MtC yr(-1) from 5.5 Mha. The potential income for carbon mitigation is $324 million at $5 per tonne of carbon. The potential exists to increase this by orders of magnitude, and so contribute significantly to greenhouse-gas abatement. Most agricultural mitigation options also provide several ancillary benefits. However, there are many technical, financial, policy, legal and institutional barriers to overcome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spatial Decision Support System (SDSS) assist in strategic decision-making activities considering spatial and temporal variables, which help in Regional planning. WEPA is a SDSS designed for assessment of wind potential spatially. A wind energy system transforms the kinetic energy of the wind into mechanical or electrical energy that can be harnessed for practical use. Wind energy can diversify the economies of rural communities, adding to the tax base and providing new types of income. Wind turbines can add a new source of property value in rural areas that have a hard time attracting new industry. Wind speed is extremely important parameter for assessing the amount of energy a wind turbine can convert to electricity: The energy content of the wind varies with the cube (the third power) of the average wind speed. Estimation of the wind power potential for a site is the most important requirement for selecting a site for the installation of a wind electric generator and evaluating projects in economic terms. It is based on data of the wind frequency distribution at the site, which are collected from a meteorological mast consisting of wind anemometer and a wind vane and spatial parameters (like area available for setting up wind farm, landscape, etc.). The wind resource is governed by the climatology of the region concerned and has large variability with reference to space (spatial expanse) and time (season) at any fixed location. Hence the need to conduct wind resource surveys and spatial analysis constitute vital components in programs for exploiting wind energy. SDSS for assessing wind potential of a region / location is designed with user friendly GUI’s (Graphic User Interface) using VB as front end with MS Access database (backend). Validation and pilot testing of WEPA SDSS has been done with the data collected for 45 locations in Karnataka based on primary data at selected locations and data collected from the meteorological observatories of the India Meteorological Department (IMD). Wind energy and its characteristics have been analysed for these locations to generate user-friendly reports and spatial maps. Energy Pattern Factor (EPF) and Power Densities are computed for sites with hourly wind data. With the knowledge of EPF and mean wind speed, mean power density is computed for the locations with only monthly data. Wind energy conversion systems would be most effective in these locations during May to August. The analyses show that coastal and dry arid zones in Karnataka have good wind potential, which if exploited would help local industries, coconut and areca plantations, and agriculture. Pre-monsoon availability of wind energy would help in irrigating these orchards, making wind energy a desirable alternative.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the critical problems currently being faced by agriculture industry in developing nations is the alarming rate of groundwater depletion. Irrigation accounts for over 70% of the total groundwater withdrawn everyday. Compounding this issue is the use of polluting diesel generators to pump groundwater for irrigation. This has made irrigation not only the biggest consumer of groundwater but also one of the major contributors to green house gases. The aim of this thesis is to present a solution to the energy-water nexus. To make agriculture less dependent on fossil fuels, the use of a solar-powered Stirling engine as the power generator for on-farm energy needs is discussed. The Stirling cycle is revisited and practical and ideal Stirling cycles are compared. Based on agricultural needs and financial constraints faced by farmers in developing countries, the use of a Fresnel lens as a solar-concentrator and a Beta-type Stirling engine unit is suggested for sustainable power generation on the farms. To reduce the groundwater consumption and to make irrigation more sustainable, the conceptual idea of using a Stirling engine in drip irrigation is presented. To tackle the shortage of over 37 million tonnes of cold-storage in India, the idea of cost-effective solar-powered on-farm cold storage unit is discussed.